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Abstract: One obstacle to developing an effective therapeutic strat-
egy to treat or prevent asthma is that the fundamental causes of
asthma are not totally understood. Asthma is thought to be a chronic
TH2 immune-mediated inflammatory disease. Epigenetic changes
are recognized to play a role in the initiation and maintenance of a
TH2 response. MicroRNAs (miRNAs) are key epigenetic regulators
of gene expression, and their expression is highly regulated, there-
fore, deregulation of miRNAs may play an important role in the
pathogenesis of asthma. Profiling circulating miRNA might provide
the highest specificity and sensitivity to diagnose asthma; similarly,
correcting potential defects in the miRNA regulation network may
lead to new therapeutic modalities to treat this disease.
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INTRODUCTION

Asthma is a chronic inflammatory disease of the lungs,
characterized by airway hyperreactivity, mucus hypersecre-

tion, and airflow obstruction, resulting in a broad spectrum of
problems, ranging from mild respiratory symptoms to severe
respiratory distress.1 It can be exacerbated by multiple environ-
mental allergens or irritants, exercise, respiratory tract infections,
and comorbid conditions.2 The incidence of asthma continues to
increase in all age groups.3 For example, since 1980, it has
increased up to 160% in children in the United States. It is the
most common chronic disease in this age group and one of the
most common chronic diseases in westernized countries.4–6
Therapy primarily consists of long- and short-acting beta-ago-
nists, leukotriene antagonists, inhaled corticosteroids, avoidance
of allergens and irritants, and allergen immunotherapy. Despite
great progress in treatment, there is no way to prevent the initial
onset of asthma and there is no cure for this disease.

The difficulty in developing a more effective therapeu-
tic strategy may reflect the fact that the fundamental causes of
asthma are not completely understood, and therefore, many
current therapeutic modalities are not directed to the under-
lying causes. The discovery of microRNAs (miRNAs) may
bring fundamental changes in the understanding and thera-
peutic strategies in complex human diseases such as asthma.

REGULATORS OF THE REGULATORS: KEY
REGULATORS FOR GENE EXPRESSION IN THE

IMMUNE SYSTEM
miRNAs are �22 nucleotide long noncoding RNAs

that predominantly silence target mRNA.7 miRNAs may be
located in introns, exons, or intergenes in the genome.
miRNA is first transcribed by RNA polymerase II as a large
primary miRNA (pri-miRNA), then processed by the endo-
nuclease Drosha into a hairpin structure (precursor miRNA,
premiRNA), transported into the cytoplasm, and further
cleaved by the endonuclease Dicer into a single-stranded
‘mature’ miRNA.8,9 The mature miRNA then guides a com-
plex called miRNA-induced silencing complex (miRISC) by
the base-pairing rule to its target mRNA to repress transla-
tion.7 For more information about the biogenesis of miRNA,
please refer to references 10 and 11.10,11

Like mRNAs, miRNAs are transcribed by RNA poly-
merase II; however, they have many unique features: 1)
About 11% of human miRNAs are encoded by multiple genes
(unpublished data, Wang JW and Mohapatra SM). 2) Multi-
ple miRNAs may be produced from a single premiRNA. For
example, mmu-miR-125b-3p and mmu-miR-125b-5p are
from the 3� and 5� ends of premmu-miR-125b-1, respectively,
and mmu-let-7a and mmu-let-7a* (the asterisk denotes the
miRNA is the nonguide strand of the miRNA duplex. In this
case mmu-let-7a* is the complementary strand of mmu-let-
7a) are from premmu-let-7a-1. 3) A single transcript may
encode a cluster of distinct miRNAs. One of the largest
miRNA clusters is the miR-154 miRNA cluster with more
than fifty potential miRNAs located in human imprinted
14q32 domain.12,13 A major asthma susceptibility gene was
mapped in a region close to this domain.14 The largest
nonconserved miRNA cluster is comprised of 54 miRNAs on
human chromosome 19.12 4) miRNAs may be categorized
into families according to the homology of their seed se-
quences (the first 7-8 nucleotides of the 5� end of the
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miRNA). 5) One miRNA may target many different mRNAs
and each mRNA can be targeted by multiple miRNAs, as
only partial complementarity (usually the seed sequence) to
its target site is required. In contrast, the specificity of
miRNA regulation may have a single base discrimination, as
suggested by the fact that the members of a miRNA family may
differ by a single base. In summary, a cluster of miRNAs may
be controlled by one promoter, but a miRNAmay be encoded by
multiple premiRNAs. A miRNA may target multiple genes, and
one gene may be targeted by multiple miRNAs, demonstrating
the complexity of the miRNA regulatory network.

About 1048 human miRNA genes have been identified
as of January 2011,15 approximately equal to the number of
transcription factors.16 Computational and experimental stud-
ies predict that from 30 to 100% of the human protein-coding
genes might be under the regulation of miRNAs.17,18 Major
miRNA targets are components of transcription machinery
including transcription factors, cofactors, and chromatin
modifiers, whereas upstream factors in signal transductions,
such as ligands and receptors, are usually not miRNA tar-
gets.19 In addition to their traditional role of repressing
translation, miRNAs may also repress or activate gene tran-
scription or even activate translation.20,21 For example,
miR-369-3p can up-regulate the expression of tumor necrosis
factor-� (TNF�),22 miR-122 can activate hepatitis C virus
translation23 and miR-466l can up-regulate expression of
IL-10.24 Whether a miRNA represses or activates the trans-
lation of the same mRNA may depend on the cell cycle
status, proliferating or quiescent, respectively.25

The importance of miRNAs was demonstrated by the
deletion of Dicer in mice. Traditional knockout (KO) of Dicer
in mice causes embryo-lethality,26 suggesting that miRNAs
are critical to embryo development. Because Dicer is required
for miRNA processing, the cells in Dicer-deficient mice lack
mature miRNAs. When Dicer is specifically deleted in T regs
using Cre/loxP conditional knockout techniques, the mice
rapidly develop a fatal systemic autoimmune disease, resem-
bling that seen in FoxP3 KO mice because of the lost
suppression activity of Tregs in vivo.27 While deleting Dicer
in the T lymphocyte lineage in the mice impairs T cell
development and differentiation and cytokine production, it
also blocks peripheral CD8� T cell development.28 Abroga-
tion of global miRNA processing in animals also enhances
tumor development and tumorigenesis,29 consistent with the
observations that there is a global decrease of miRNA ex-
pression in human cancers versus normal tissues,29 and that
the cancer cells have shorter 3� UTRs than normal cells
enabling them to escape regulation by miRNAs.30

The critical role of miRNAs in gene regulation was also
demonstrated through knockout or over-expression of a sin-
gle individual miRNA in mice. Because a single miRNA can
affect the expression levels of hundreds or even thousands of
proteins,31,32 deregulation of a single miRNA may have
profound effects on the cell.
miR-155

miR-155-deficient mice are immunodeficient and display
increased airway remodeling. These mice cannot produce the
cytokines necessary for immune system homeostasis and func-

tion.33,34 MiR-155 targets the transcription factor c-Maf, which
promotes IL-4, IL-5, and IL-10 production by T helper type 2
(TH2) cells. Therefore, miR-155 may modulate the levels of
c-Maf, which is likely to contribute to the attenuation of TH2 cell
responses in vivo.34 Mice over-expressing miR-155 exhibit a
spontaneous B cell malignancy, indicating that one function of
miR-155 is to induce polyclonal expansion.35

miR-146a
NF-�B was found to regulate the expression of miR-

146a, which potentially targets two key adapter molecules
downstream of Toll-like and cytokine receptors: TNF recep-
tor-associated factor 6 and IL-1 receptor-associated kinase
1.36,37 This suggests that miR-146a may play a role in
controlling Toll-like receptor and cytokine signaling.

miR-150
miR-150 down-regulates c-Myb, a transcription factor

that controls lymphocyte development38 and is an important
regulator of Gata3, which is associated with an asthmatic
phenotype.39 MiR-150 was proposed as a marker of early
sepsis, because its levels in both leukocytes and plasma
correlate with the level of disease severity.40 Over-expression
of miR-150 results in a 30-35% reduction of c-Myb protein
levels and causes phenotypes resembling those of c-Myb
heterozygous KO mice,38 suggesting that miRNAs function
as ‘fine-tuners’ of protein expression rather than as ‘on-off’
switches. Small changes in protein levels may have severe
functional consequences.41 The dose-sensitivity of proteins is
highlighted by the numerous human diseases caused by
heterozygous mutations that result in haploinsufficiency. miRNA
regulation might represent an efficient system by which a cell can
rapidly control threshold-dependent cellular events, given the likely
role of miRNAs in ‘fine-tuning’ protein dosage.42

miR-181a
Over-expression of miR-181a in mature T cells aug-

ments T cell receptor (TCR) sensitivity, while its inhibition in
immature T cells reduces sensitivity to peptide antigens. How
could a single miRNA regulate such a complex process as T
cell responsiveness to antigens? TCR signaling is controlled
by sequential phosphorylation and dephosphorylation events
in a spatially and temporally ordered manner. miRNA-181a
regulates multiple targets, mainly phosphatases that act as
negative regulators in the TCR signaling pathway. These
findings strengthen the concept that miRNAs carry out inte-
grated biologic functions by regulating gene networks.39,40

Collectively, the evidence indicates that miRNAs are
regulators of the regulators in gene expression and are involved
in a remarkable spectrum of biologic pathways including cell
development, proliferation, and apoptosis. For more information
on miRNAs involved in allergy and asthma (see Appendix).

ASTHMA AND MICRO-RNA EPIGENETICS
Under normal conditions, immune responses are tightly

regulated and balanced through a complex of activation and
suppression pathways. Asthma may disturb this balance lead-
ing to airway inflammation dominated by eosinophils and
CD4� T lymphocytes. The latter produce large quantities of
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TH2 cytokines, IL-4, IL-5, and IL-13, which promote asthma
by enhancing the growth, differentiation, and recruitment of
eosinophils, basophils, mast cells, and IgE-producing B cells
and directly inducing airway hyperreactivity (AHR).43–45

Asthma is a complex disorder of the immune system resulting
from interactions of a genetic predisposition with environ-
mental exposures. This genetic predisposition is demon-
strated by the greater concordance of asthma among monozy-
gotic twins compared with dizygotic twins.46 Multiple genetic
loci and more than 100 genes that contribute to asthma have
been identified in at least one population.47 Identifying
asthma susceptibility genes is one major pursuit in the field;
however, studies on these ‘asthma-associated’ genes have
been difficult to replicate, and none are consistently associ-
ated with the same asthma phenotype.48 This discrepancy
may be partially because of the fact that environmental factors
also play a significant role in asthma. For example, the sharp
increase in asthma prevalence over the past three decades,49 the
huge variations among populations with similar racial back-
grounds but different environmental exposures, and the marked
increase in occupational asthma all point to the predominance of
environmental factors in the etiology of asthma.50 These phe-
nomena cannot be explained by genetic changes, which would
take many generations; but rather, environmental and lifestyle
factors may be responsible by inducing stable alterations in
phenotypes.50 Asthma is a complex disorder involving interac-
tions between genetic predisposition and environmental fac-
tors,51 but how the interactions initiate disease or cause it to
persist is unclear. It has been suggested that the interactions are
mediated by epigenetics.50

A classic example of epigenetics occurs in honeybees
where genetically identical larvae develop into queens or
workers depending on whether or not they are fed royal jelly.
Silencing DNA methyltransferase with small interfering
RNA (siRNA) in newly hatched larvae produce similar re-
sults to those seen with royal jelly.52

Epigenetic factors, such as DNA methylation, histone
modifications, miRNA changes, and chromatin alterations, may
be important in the pathogenesis of asthma and may affect the
expression of multiple inflammatory genes.53 Acetylation of
histones activates inflammatory genes, whereas histone deacety-
lation represses inflammatory genes.54 Histone modifications
may activate inflammation in asthma and lead to glucocortico-
steroid resistance. Glucocorticosteroids repress inflammatory
genes and thus decrease inflammation.54 Evidence now indicates
that epigenetic changes may play a role in responses to environ-
mental exposures in utero and to the effects of air pollution in
chronic lung diseases such as asthma.55 Epigenetic changes also
affect the initiation and maintenance of a TH2 response.56

miRNAs directly regulate protein expression without tran-
scription and may respond more rapidly than other epigenetic
regulators, which require gene transcription in addition to pro-
tein translation and take longer to be manifested. Several lines of
evidence show that miRNAs may be regulated by other epige-
netic mechanisms. Epigenetic silencing of miRNA genes is one
of the mechanisms responsible for a global reduction of miRNA
levels in cancer.57 In turn, the enzymes of the epigenetic ma-
chinery, such as DNA methyltransferases, histone deacetylases,

and histone methyltransferases, can be directly repressed by
some miRNAs.57 Because miRNAs often target hundreds of
genes, miRNA epigenetic change may be a rapid and efficient
way to regulate a group of genes after various environmental
assaults. Evidence suggests that miRNAs may be the key regu-
lators in epigenetic regulation.

While the role of TH2 immune inflammation is impor-
tant in the pathogenesis of asthma, the mechanism that
initiates TH2 development is not understood. Epidemiological
studies indicate that severe respiratory tract viral infections
and repeated allergen exposure may interact synergistically in
promoting a TH2 phenotype and development of asthma.58
Respiratory syncytial virus (RSV) is a major pathogen respon-
sible for serious respiratory tract infections.59 The RSV genome
encodes several human miRNAs that allegedly target cytokine
and chemokine expression and other genes that activate the
immune system. This suggests that RSV may use miRNAs to
regulate the immune system,60 and viral infections may dereg-
ulate the miRNA regulation network of the host cells.

We hypothesize that viral-mediated deregulation of
miRNAs may cause the innate immune system to inappro-
priately sense allergens as pathogens through pathogen-asso-
ciated molecular pattern (PAMP) recognition and respond
accordingly, leading to a programmed adaptive TH2 immune
response.61,62 Toll-like receptors (TLRs) are one of the major
types of PAMP receptor that enable inflammatory cells to
recognize invading microbial pathogens through differential
responses to microbial and viral products.63 TLR signaling
and miRNA expression are linked to one another. For exam-
ple, miR-126 expression is up-regulated by TLR4,64 thereby
linking innate immune activation to inflammatory responses
through up-regulated miRNAs in asthma, while miR-21 neg-
atively regulates TLR4 after lipopolysaccharide (LPS) stim-
ulation.65 Coupled TLR signaling and miRNA expression
pathways may act as basic regulatory signals in the innate
immune system, leading to activation of inflammatory path-
ways in asthma.64,66,67

In addition, miRNAs may play a crucial role in orches-
trating the phenotypic programming of TH2 response cells such
as mast cells, eosinophils, T lymphocytes, macrophages, neutro-
phils, and airway epithelial cells to enhance the production of
cytokines and other mediators that promote the development of
the inflammatory lesions which characterize asthma.68,69 There-
fore, miRNA deregulation may contribute to the initiation and
development of asthma and to its clinical profile.

MIRNA PROFILING AND DETECTION IN
ASTHMA DIAGNOSIS

Microarrays, which can simultaneously analyze thou-
sands of genes, are well-suited for studying the pathogenesis
of complex diseases like asthma which involves many
genes.47 These techniques confirm the many genes already
known to be relevant to asthma and can be used to identify
novel candidate genes and pathways in asthma pathogenesis.
However, for most genes, their relationship to the pathogen-
esis of asthma remains conjectural and none seem to be
directly involved in allergic inflammation. The lack of con-
sistency in gene data may result from the relatively few
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studies, many of which are based on small sample sizes. More
importantly, however, mRNA microarrays have an inherent
shortcoming in that mRNA alone cannot be used to represent
gene expression levels because posttranscriptional regulators
such as miRNAs can affect protein levels without changing
mRNA levels.

miRNAs are key regulators of gene expression. Their
expression patterns are highly regulated, and many miRNAs
are expressed in a tissue-specific and developmental stage-
specific manner.70,71 Deregulation of miRNAs may contribute
to many human diseases such as cancer, asthma, allergy, and
chronic infections. Abnormal miRNA signatures that exist in
disease states may be valuable diagnostic markers for early
detection and prognosis.72 For example, aberrant miRNA
expression is a hallmark of tumor development73 and con-
tributes to the initiation and progression of the cancer.7
Deregulation of miRNAs is also associated with tumor sup-
pression or tumorigenesis, metastasis, and poor prognosis in
human breast cancer.74 Let-7 and mir-155 levels are correlated
with disease survival in non-small cell lung cancer. miRNA
expression profiles are effective for classifying solid and hema-
tologic human cancers including poorly differentiated tumors
and different cell lineages. These signature profiles are strongly
associated with tumor sizes and ethnicity, whereas mRNA
profiles are highly inaccurate when applied to the same sam-
ples.5,72,75,76 Therefore, profiling the expression patterns of
miRNAs can be of greater value than those of the 13,000
protein-encoding mRNAs in cancer diagnosis and prognosis.

These facts suggest that miRNAs can be used as a
robust biomarker for diagnosis and staging of diseases such
as cancer and for its prognosis and drug-response predic-
tion.42,77-83 They may also be used to identify individuals at
risk and be indicative of the altered genetic programs that
lead to susceptibility and disease expression in asthma. Thus
far, miRNA profiling in asthma has been done in only a few
reported studies. In one, a significant induction of miRNAs in
the lungs after allergen challenge was found, suggesting an
important role for miRNAs in the disease.84 However, an-
other study found no significant difference in the expression
of 227 miRNAs in airway biopsies from normal and mild
asthmatic patients and from patients after one month of
inhaled corticosteroid treatment.85 In two studies using mouse
models of experimental asthma, multiple miRNAs were
found to be differentially expressed in lung tissues. In one
study, miR-21 was up-regulated in allergic airway inflamma-
tion induced by IL-13 or ovalbumin (OVA) and resulted in
altered IL-12 expression, suggesting miR-21 may contribute
to polarization of Th cells toward a TH2 response.86 In
another study, miR-146b, -223, -29b, -29c, -483, -574-5p,
-672, and -690 were implicated in asthma pathogenesis.87

miRNA Detection Techniques
Accurate and sensitive quantitation of miRNAs is im-

portant, not only for studying miRNA regulation networks,
but also for clinicians treating diseases. However, detection
of mature miRNAs is difficult because they are small, only
�22 base long, and the same mature miRNA sequence is
present in other sequences, such as premiRNA, pri-miRNA,
genomic DNA, and mRNA. In addition, miRNAs of the same

family may differ by only one or a few bases while the
melting temperatures (Tm) of miRNAs vary greatly, from
about 55 to 90°C. Consequently, direct detection without
modifying the mature miRNA may pick up all sequences and
result in inaccurately high levels. Although a wide spectrum
of miRNA detection techniques have been developed, none
can accurately and sensitively perform high-throughput pro-
filing of all known miRNAs. miRNA detection using SYBR
Green-based reverse transcription quantitative polymerase
chain reaction (RT-qPCR) is currently the most frequently
used technique because of its low cost. However, because
SYBR Green nonspecifically detects both double-stranded
and single-stranded DNA (although at lower sensitivity) and
RNA, this technique is associated with high nonspecificity
and low sensitivity. Another widely used qPCR miRNA
detection technique is based on Taqman probes. It requires
one specific RT primer and one specific probe for each
miRNA, and thus is relatively expensive and not suitable for
high-throughput assays. Other miRNA detection meth-
ods88–91 based on northern hybridization, cloning, sequenc-
ing, and microarray analysis are not comparable in sensitivity
and specificity to RT-qPCR. Because of these drawbacks,
novel assays with high specificity, sensitivity, and low cost
are still desirable.

Circulating miRNAs as Biomarkers
Extracellular RNAs, including miRNAs, circulate in

blood and other body fluids of healthy people and diseased
subjects.92,93 Although ribonucleases are present in both
plasma and serum, the extracellular miRNAs have a struc-
tural integrity that is proof against enzymatic digestion.94,95

Exogenous RNAs added to plasma or blood are immediately
degraded, whereas endogenous plasma RNAs are stable for
hours under similar conditions. Treatment with certain deter-
gents, however, results in immediate degradation of plasma
extracellular RNAs, apparently secondary to disruption of the
lipid vesicles.96 The extracellular RNAs are packaged in
secreted particles such as apoptotic bodies and exosomes, and
thus are protected from the existing ribonucleases.96 Apopto-
tic bodies are small membranous particles released during
programmed cell death97 and exosomes are small intralumi-
nal vesicles (50-100 nm in diameter) from multivesicular
bodies (MVB)96 released by many cells on exocytic fusion of
MVB with plasma membranes.98

Secreted vesicle miRNA can be delivered into and
function in another cell.99 For example, a tumor-suppres-
sive miRNA secreted via this pathway was transported
between cells and exerted gene silencing in the recipient
cells, thereby leading to cell growth inhibition.100 Syn-
thetic miRNA mimetics, viral miRNAs expressed by in-
fected B cells, and endogenous miRNAs could all be
transferred into T cells upon cell contact and the acquired
miRNAs can alter the expression of target genes in the
recipient T cells. Apoptotic bodies delivered miR-126 into
endothelial cells.101 Secreted microvesicles (MV) contain-
ing miR-150 from cultured cells and plasma can enter
human HMEC-1 cells and effectively reduce expression of
the miR-150 target, c-Myb, and enhance cell migration.
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Intravenous injection of the MVs also significantly in-
creased the level of miR-150 in mouse blood vessels.102

High levels of immune-related miRNAs were detected in
human breast milk in the first six months of lactation, and they
were stable in very acidic conditions (pH 1), suggesting that
these miRNAs may enter the infant’s body and modulate the
development of its immune system.103 These studies demon-
strate that miRNAs can be selectively secreted and delivered
into target cells to repress target gene expression and regulate
cell function. Horizontal transfer of miRNAs among neigh-
boring cells may be necessary in a variety of conditions for
rapid phenotype adjustments, facilitating intracellular pro-
cesses such as antigen presentation.98,104

In summary, circulating miRNAs are stable under harsh
conditions such as freezing and thawing, high temperature
storage (up to 37°C), acidic conditions and RNase digestion.
They are detectable in all plasma samples, and the plasma
miRNA levels reflect the tumor miRNAs in most cases of
cancer, suggesting that miRNAs in serum are sufficiently
stable to serve as clinical biomarkers to detect various forms
of early cancer and other diseases.105 In addition to their
diagnostic values, extracellular MV miRNAs may also have
therapeutic roles. It is possible that one day MV miRNAs
from healthy individuals could be transfused into patients to
treat their disease.

miRNAS as Asthma Therapeutics
Allergic asthma is a systemic disease characterized by

chronic airway inflammation thought to be secondary to
impaired or deficient T-reg responses or aberrant allergen-
specific overactivation of TH2 cells.106–108 Treatments that
enhance T-reg responses but repress TH2 cell activation may
be useful to prevent and control asthma.109 Allergic asthma
can be controlled with anti-inflammatory inhaled corticoste-
roids (ICS),110–113 but allergen-specific immunotherapy is the
only treatment that creates long-lasting immune toler-
ance.114–116 Antiinflammatory drugs, which are not always
effective in moderate to severe asthma117 are not specifically
directed at the underlying pathogenesis of asthma and are asso-
ciated with side effects and glucocorticosteroid resistance. Long-
term use of high-dose ICS therapy can potentially cause im-
paired growth in children, osteopenia and osteoporosis, skin
thinning and bruising, and cataracts.111–113,118

SIT therapy involves the repeated injection of allergen
over a prolonged period of time to create immune tolerance to
the allergens to which individuals are allergic. It works best
in mild to moderate asthma and is not effective in more
severe asthma.114–116 Targeting TH2 cytokines is not clini-
cally effective, raising the important question of whether
inhibition of a single cytokine is sufficient in such a complex,
heterogeneous disease as asthma.119 Furthermore, selective
inactivation of a single immunomodulator may have undesir-
able and unexpected consequences.120 Despite great progress
in diagnosing and treating asthma, we still do not know how
to prevent the initial onset of the disease or how to cure it;
thus, new treatments directed at the cause of this disease
are desirable.

miRNA epigenetics may play a significant role in the
pathogenesis of asthma as a regulatory layer between genetic

and environmental factors and the allergic inflammation in-
duced by the immune system. Epigenetic changes are poten-
tially reversible, and therapeutic modulation of miRNAs may
provide an opportunity to regulate or suppress allergic in-
flammation. Treating potential defects in the miRNA regula-
tion network may lead to new therapeutic modalities either by
targeting the specific miRNA whose expression is too high or
by delivering a miRNA mimic that resembles the Dicer-
processed endogenous miRNA whose expression is too low.
There are numerous examples linking deregulated expression
of miRNAs to various forms of cancer, and miRNAs are
increasingly viewed as potential therapeutic targets.121,122
miRNAs hold great promise for human gene therapy, a
concept strengthened by the finding that replacing a single
miRNA can prevent the development of cancer in vivo.123
There are several pioneering studies indicating that manipu-
lating miRNA expression has therapeutic potential for other
diseases.69,124

miRNAs are naturally occurring small endogenous
molecules used by many organisms to orchestrate the expres-
sion of the gene network. Targeting specific miRNAs would
be highly efficient and have fewer side effects than many
other forms of treatment.125 In fact, “antagomirs,” cholester-
ol-conjugated RNA molecules complementary to mature tar-
get miRNAs have been developed125 that can silence specific
miRNAs in multiple organs for more than a week after
one intravenous injection.124 Ectopic expression of a single
miRNA, miR-26a, reverses disease progression in a mouse
model of liver cancer.123 Blockade of miR-126 suppressed
the asthmatic phenotype, resulting in diminished TH2 re-
sponses, inflammation, airway hyperresponsiveness, eosino-
phil recruitment, and mucus over secretion. These studies
demonstrate that powerful technologies are now available to
characterize the in vivo role of individual miRNAs in gene
regulation and in disease models, and that targeting miRNA
in the airways may lead to antiinflammatory treatments for
asthma.64

CONCLUSIONS AND PERSPECTIVES
Watson-Crick base pairing is the prerequisite for

faithful genetic information flow during DNA replication,
RNA transcription and protein translation. miRNAs also
use this base-pairing rule to specifically control the com-
plex gene regulation network with an accuracy of one base.
The targets of miRNAs are mainly involved in transcrip-
tional control of gene expression; thus, miRNAs are reg-
ulators of the regulators and the central players in gene
expression regulation. Expression of miRNA is tightly
controlled. Specific expression profiles are associated with
particular pathologic states and deregulation of miRNAs
may contribute to various human diseases including
asthma. All of these characteristics, together with the fact
that circulating miRNAs in the blood are stable, make
miRNAs potentially important clinical biomarkers for di-
agnosis, treatment, and prognosis of disease. Correcting
the defects in the miRNA regulation network could pro-
vide an opportunity for efficiently controlling or even
eliminating allergic inflammation.
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miRNA profiling, combined with traditional mRNA
microarrays and protein arrays, may become a powerful tool
for studying global gene regulation networks, greatly enhanc-
ing our understanding of the complex phenotypes in human
diseases. Ultimately, it may answer some of the fundamental
questions about asthma such as how genetic and environmen-
tal interactions combine to initiate the disease or how airway
inflammation leads to airway dysfunction. Much remains
unknown in the miRNA world, but future research will bring
improvements in strategies for the application of miRNA
profiling and therapeutics to the diagnosis and treatment of
many different diseases and asthma.
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APPENDIX. Summary of Selected miRNA Involvement in Allergy and Asthma

miRNA/reference Function
Transcriptional
Regulation Targets

let-7i1 Let-7i regulates TLR 4 expression. NF-�B p50-C/EBP� silencer complex binds to the
let-7i promoter following microbial stimulus to repress let-7i expression

Toll-like

miR-212 Up-regulated in allergic airway inflammation IL-12p35

miR-26a3 Hypertrophic gene of human airway smooth muscle cells GSK3B

miR-29b4 Expression and promoter function are repressed by activation of NF-�B signaling, via
ligation of TLRs

NF-�B, TLRs

miR-125b5 Downregulated by LPS and oscillations in expression after exposure to TNF� NF-�B TNF�

miR-1266 Antagonism of miRNA-126 suppresses the effector function of Th2 cells and the
development of allergic airway disease

miR-128b7 Ectopic expression of miR-128b restores glucocorticoid resistance, while a mutation
in miR-128b alters the processing of miR-128b. The resultant downregulation of
mature miR-128b contributes to glucocorticoid resistance

MLL-AF4
and AF4-
MLL

miR-133a8 Down-regulation of miR-133a contributes to up-regulation of RhoA in bronchial
smooth muscle cells

miR-146a and
miR-2239

Serum miR-146a and miR-223 were significantly reduced in septic patients and might
serve as new biomarkers for sepsis with high specificity and sensitivity

(Continued)
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miRNA/reference Function
Transcriptional
Regulation Targets

miR-146a10,11 Inhibits inflammation. Expression induced in macrophages and alveolar/bronchial
epithelium following activation of TLR-2, -4, and -5 or exposure to TNF� and IL-
1�. Critical for in vitro monocytic cell-based endotoxin tolerance12

NF-�B IRAK1,
TRAF6

miR-146b10 LPS-induced expression induced in macrophages IRAK1,
TRAF6

miR-14713 Induced upon stimulation of multiple TLRs and a negative regulator of TLR-
associated signaling events in murine macrophages, forming a negative-feedback
loop in which TLR stimulation induces miR-147 to prevent excessive inflammatory
responses

TLR2, TLR3, and
TLR4

miR-148a, miR-148b,
and miR-15214

A SNP at the 3¢ UTR of HLA-G, an asthma-susceptibility gene, affects the binding
of the three miRNAs. An example of gene-by-epigenetics interaction

miR-15015 Significantly reduced in plasma samples of sepsis patients and correlated with the
level of disease severity. Plasma levels of TNF-�, IL-10, and IL-18 were
negatively correlated with the plasma levels of this miRNA. The plasma levels
ratio for miR-150/IL-18 can be used for assessing the severity of sepsis

miR-15016 Controls c-Myb expression in vivo in a dose-dependent manner over a narrow range
of miRNA and c-Myb concentrations and this dramatically affects lymphocyte
development and response. C-Myb regulates asthma susceptibility gene, Gata317

C-myb

miR-15518 Induced upon T-cell activation and promotes Th1 differentiation when over-expressed
in activated CD4� T cells. Antagonism of miR-155 leads to induction of IFN-�R.
A functional miR-155 target site has been identified within the 3’ untranslated
region of IFN-�R�

IFN-�R�

miR-15519–22 Required for normal production of isotype-switched, high-affinity IgG1 antibodies in
B-cells. Also determines Th1 and Th2 differentiation and is a positive regulator of
antigen-induced responses in T-cells

AP-1 PU.1, c-Maf

miR-15519,23,24 Regulates lung remodeling. Both miR-146a and miR-155 have also been implicated in
the development of rheumatoid arthritis, possibly by regulating components of the
inflammatory response

miR-1555,25–27 Increased expression following activation of the innate immune response. Inhibits
inflammatory mediator release and stimulates granulocyte and monocyte
proliferation TLR/IL-1 inflammatory pathway as a general target of miR-155. We
further demonstrate that miR-155 directly controls the level of TAB2, an important
signal transduction molecule. In mature human DCs, miR-155 is part of a negative
feedback loop, which down-modulates inflammatory cytokine production in
response to microbial stimuli

AP-1

miR-203 and
miR-146a28

Associated with psoriasis

miR-22329–31 Negative regulator of neutrophil proliferation and activation PU.1, C/EBP�, NFI-A Mef2c, IGFR

MIRNA-221-22232,33 Up-regulated upon mast cell activation and regulate the cell cycle of mast cells PDGF p27(kip1),
c-Kit

Abbreviations: AP-1, activator protein; Bcl, B-cell lymphoma; C/EBP, CCAAT-enhancer binding protein; C-kit, Hardy-Zuckerman 4 feline sarcoma viral oncogene
homolog; C-myb, V-myb myeloblastosis viral oncogene homolog (avian); GSK3B, glycogen synthase kinase 3 beta; HLA-G, human leukocyte antigen G; IFN-�R�,
interferon-gamma receptor alpha; IGFR, insulin-like growth factor receptor; IRAK, IL-1 receptor activated kinase; LPS, lipopolysaccharide; Maf, musculoaponeurotic
fibrosarcoma; Mef, myeloid ELF-1 like factor; miRNA, microRNA; MLL-AF4, myeloid/lymphoid or mixed-lineage leukemia-ALL1-fused gene from chromosome 4; NFI-A,
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