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Abstract

Skin barrier structure and function is essential to human health. Hitherto unrecognized functions of epidermal
keratinocytes show that the skin plays an important role in adapting whole-body physiology to changing
environments, including the capacity to produce a wide variety of hormones, neurotransmitters and cytokine that
can potentially influence whole-body states, and quite possibly, even emotions. Skin microbiota play an integral role in
the maturation and homeostatic regulation of keratinocytes and host immune networks with systemic implications. As
our primary interface with the external environment, the biodiversity of skin habitats is heavily influenced by
the biodiversity of the ecosystems in which we reside. Thus, factors which alter the establishment and health
of the skin microbiome have the potential to predispose to not only cutaneous disease, but also other inflammatory
non-communicable diseases (NCDs). Indeed, disturbances of the stratum corneum have been noted in allergic diseases
(eczema and food allergy), psoriasis, rosacea, acne vulgaris and with the skin aging process. The built environment,
global biodiversity losses and declining nature relatedness are contributing to erosion of diversity at a micro-ecological
level, including our own microbial habitats. This emphasises the importance of ecological perspectives in overcoming
the factors that drive dysbiosis and the risk of inflammatory diseases across the life course.
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Background
As the primary interface with the external environment,
skin ecosystem is home to complex yet still poorly
understood microbial habitats and communities that re-
flect the health and diversity of the wider ecosystems in
which we reside [1]. Resident microbes are increasingly
viewed as an integral part of the functional unit of the
skin and other body surfaces, interacting with tissues
and immune networks to influence the health and func-
tion not only of local systems, but wellbeing more

generally [1]. Indeed, the maturation and function of the
systemic immune system in the young child is
dependent on contact with microbes [2]. This, in turn,
has implications for the development and function of
virtually all organ systems, including the brain, which
are profoundly influenced by the immune system. Lo-
cally, microbial-immune interactions in the skin are vital
for optimal barrier function, pathogen defense, and tis-
sue repair with the production of key anti-inflammatory
and anti-microbial compounds to maintain healthy tis-
sue homeostasis [3].
Just as in the gut, the metabolome in the skin reflects

the combined functional metabolic activity of the mi-
crobes and our host tissues, and is greatly influenced by
our environment and behaviour [4]. The very existence
of this skin-environment interface raises important
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questions about how erosion of global biodiversity, and
declining contact with the natural environments is af-
fecting skin ecosystems and human health [5]. Examin-
ing this question in the context of the epidemic rise of
allergy and other inflammatory diseases is informative
because allergy is one of the earliest manifestations of
inflammation often first observed in the skin as disrup-
tions in barrier function and atopic eczema. Further-
more, the declining microbial diversity that has been
long linked to the rise in allergic disease also has import-
ant implications for other organ systems across the life
course [6].

Roadmap to the current review
While there is much focus in the gut microbiota in this
context, we argue that the role of skin ecosystems may
be equally important, especially as defects in skin integ-
rity, namely early onset eczema, have increased in tan-
dem with modernity [7]. This highlights the importance
of very early life events in the establishment of skin ecol-
ogy and homeostasis and in pathways to disease. More-
over, it provides reason for optimism in the search for
prevention, personalized medicine and effective strat-
egies for treatment. Here in our narrative review, we first
examine the structure and functions of the human skin
barrier, as well as current knowledge concerning the mi-
croorganisms which play functionally essential metabolic
roles in a particular cutaneous niche. Further, we de-
scribe the functional consequences of disturbances in
the integrity of the cutaneous barrier, particularly as they
relate to allergic diseases. This includes the mounting
evidence which indicates there may be far-reaching, sys-
temic immune repercussions, to local barrier disrup-
tions. In exploring the environmental and lifestyle
factors which help determine the interactions between
the cutaneous microbiome and a healthy skin barrier, we
take a broad view, discussing the total environment and
the ways in which contact with large scale biodiversity
might determine local skin micro-ecology. In a novel ex-
ploration, we expand upon discussions of farm exposure
or pet ownership and open dialogue on the emerging
construct of nature relatedness (individual affinity with
the natural environment). This psychological asset which
might play an underappreciated role in the links be-
tween environmental exposures and the microbiome. Fi-
nally, we look toward current and future possibilities
whereby the skin microbiome might be leveraged for
health promotion.

The importance of the skin barrier
Despite volumes of research demonstrating otherwise,
there is persistence of a long-held dogma that the
stratum corneum – the outer layer of skin - is merely a
collection of “dead” cells. In fact, the brick-and-mortar

structure of the stratum corneum (SC) is highly biologic-
ally active and of major importance not only to skin
health, but to overall health, throughout the life course.
Disruptions of the epidermal barrier are well known in
atopic dermatitis, psoriasis and rosacea; however loss of
normal barrier structure and function is also of rele-
vance in the most common skin condition - acne vul-
garis - and for all humans as they proceed through the
skin aging process [8, 9]. Since the SC represents an es-
sential line of photoprotection, its breakdown in both
pathology and through aging is also of relevance to the
development of skin cancer over the life course [10, 11].
The SC consists of corneocytes that represent a

tightly-organized set of bricks separated by a mortar of
intercellular lamellar lipids (Fig. 1). The former are con-
structed of keratin macrofibrils and joined to one an-
other by corneodesmosomes. The intercellular lipids are
a collection of ceramides, cholesterol, and various fatty
acids. Under normal circumstances this structure main-
tains an ideal level of skin hydration. However, the bio-
logical functions of the SC extend beyond hydration per
se. The SC performs a variety of functions including, but
not limited to: supporting the innate antioxidant system,
production of antimicrobial peptides, activation of the
host innate immune responses, and as mentioned, pro-
viding a line of defense against external threats from
ultraviolet radiation and other environmental toxins, al-
lergens, and pathogens [12].
Critical to our discussion, experimental research in-

volving an ex vivo model shows that cutaneous microbes
can influence the structure and function of the skin
without penetrating the epidermis. Thus, microbes can
set in motion the production of inflammatory cytokines
within the outermost layer of the skin [13]. Once initi-
ated, chronic inflammation can itself compromise the
normal production of SC lipids [14], which means that
cutaneous microbes may sit squarely within any discus-
sions of the human epidermal barrier.

The skin microbiome: The importance of cutaneous
ecosystems
The human microbiome includes microorganisms and
their collective genome residing in an anatomical niche.
Remarkable advances in sequencing analysis such as bac-
terial 16S ribosomal RNA gene sequencing have allowed
for tremendous insight into the previously obscure ecosys-
tems operating on and within the human body. Indeed,
given the functionally essential metabolic roles played by
microbes and their symbiotic relationship with other
forms of life, the holobiont perspective is one in which
humans are a multi-species entity [15]. Bacteria residing
on the skin mainly fall into four phyla: Firmicutes, Bacter-
oidetes, Proteobacteria and Actinobacteria. Within the
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bacterial groups, strain-level identification remains ob-
scure. Since two different strains of the same bacterial spe-
cies can have profound functional differences, there is a
critical need to advance research in this more functional
direction. Although less is known about other resident mi-
croorganisms such as viruses, fungi and parasites, they are
likely to interact with the wider ecosystem and influence
cutaneous immunity.
While the skin is arguably one complex ecosystem – it

is made up of many different habitats and microbial
communities. In any individual, the skin microbial com-
position is highly heterogeneous, and depends on the
local microenvironment of the specific skin site. Studies
of the topographical diversity across human body sites
have found that moist versus dry skin areas “are likely as
ecologically dissimilar as rain forests are to deserts” [16].
In general, these studies have identified three broad
microenvironment types with characteristic microbial
communities: sebaceous areas (where Propionibacteria
species and Staphylococci species predominate), moist
areas (where Corynebacteria species predominate, with
Staphylococci also present) and dry areas (with mixed
populations and greater prevalence of β-Proteobacteria
and Flavobacteriale) [16]. Even then, the signatures vary
with changes in the local microenvironment, between in-
dividuals and with health, behavior and environmental
contacts (as discussed further below) [17]. It is import-
ant to recognize unique site-specific interactions that
may not be captured with only a general perspective.
Similarly, there are age-related differences, with a rela-
tive dominance of lactobacilli in neonatal skin versus
propionibacteria in the mother [18].
Of the Firmicutes, Staphylococcus epidermidis com-

prises more than 90% of all aerobic resident microbiota

and has many mutualistic anti-inflammatory actions
which promote barrier function and.
inhibit colonisation with potentially pathogenic

strains of Staphylococcus aureus and potential patho-
gens [19]. This includes production of antibacterial
peptides (bacteriocins), immunomodulatory properties
(inhibition of inflammatory cytokine production) and
enhanced expression of tight junction proteins. Many
of these actions are mediated through activation of
the innate immune receptors on keratinocytes and
other local immune cells (via toll-like receptors) [20].
Thus, as with other organs, the skin innate immune
system is a composite unit of interacting human and
microbial elements and establishment of commensal
microbiota is a key factor in developing initial
homeostatic control of skin immunity (Fig. 2).

Barrier disruption in allergic disease
Eczema is frequently the first manifestation of an allergic
phenotype and clearly associated with epithelial barrier
dysfunction, with increased transepidemal water loss
(TEWL) a key feature of the disorder [21–23]. In fact, de-
fective skin barrier integrity has been proposed as a pri-
mary and initiating event in the allergic phenotype [24],
with allergen sensitization via skin giving rise to aberrant
and dysregulated responses to innocuous environmental
allergens [25]. Children with severe early-onset eczema
have the greatest risk of IgE sensitization [26], with anti-
gen transfer through a defective epidermal barrier a likely
underlying mechanism [27]. Genetic contributions in ec-
zema have been noted, including mutations of FLG which
normally encodes for the protein profilaggrin, an essential
structural component of the epidermal barrier [24, 28].
Although various gene mutations may contribute to

Fig. 1 The interdependent mutualistic relationship between commensal microbes and the host maintains tissue homeostasis, inhibiting local
inflammation. Regulatory responses generated in the skin also have systemic immunomodulatory effects

Prescott et al. World Allergy Organization Journal  (2017) 10:29 Page 3 of 16



dysfunctional epithelial development and mucosal integ-
rity, they alone cannot account for the dramatic global in-
creases in eczema and allergic disease [29].
There are recognized differences in the skin micro-

biota of individuals with established disease (reviewed
in [19]) and at this juncture it is not clear to what
degree this is secondary to skin pathology, or the ex-
tent to which skin dysbiosis also plays a role in the
pathogenesis and propagation of disease. Recent twin
studies indicate that the microbiome is a product of
both genetics and the shared environment [30]. In-
deed, strong associations have been found between
the composition of skin microbiota and genetic fac-
tors related to skin barrier function. For example,
Corynebacterium jeikeium abundance was lower in
subjects containing the minor allele of FLG [31].
However, it is almost certain that skin microbes play
a role in the initiation and amplification of inflamma-
tory loops within the skin compartment [32].
Staphylococcus aureus colonisation and reduced mi-

crobial diversity is seen in over 90% of individuals with
eczema compared with less than 5% of unaffected indi-
viduals (reviewed in [33]). S. aureus is seen in both
lesional and non-lesional skin, as well as carriage in the
nasal cavity [34, 35]. Genetic factors may predispose to
nasal carriage (including glucocorticoid receptor gene
polymorphisms) as well as environment factors such as
exposure to biocides, including triclosan, which disrupt
protective commensal ecology (reviewed in [19]). In par-
ticular, human colonisation with S. aureus in epidemio-
logical studies has been associated with relative loss of
mutualistic microbes particularly a subset of S. epidermi-
dis which inhibits and destroys S. aureus biofilm forma-
tion by the production of serine proteases [36]. This

provides perspective for observations that species of
commensal staphylococci (including S. epidermidis) are
reduced at two months of age pre-symptomatically in in-
fants who subsequently develop eczema by one year of
age [37]. A complex feedback loops suggested by the ob-
servation that improving barrier function and reducing
skin inflammation significantly reduces S. aureus burden
in children and adults with eczema. While the mecha-
nisms and causal pathways are not yet defined, this
nonetheless suggests a role for strategies that promote
protective strains of S. epidermidis and other commen-
sals, or at least prevent their loss. Importantly, the dis-
tinction between what is considered harmless or
pathogenic lies not only in the inherent properties of the
microbe, but in the health of the skin ecosystem, barrier
integrity, and other inter-related local factors [20].
Recent studies using whole metagenome sequencing

have identified distinct differences between baseline skin
microbiomes of eczema prone subjects and normal
healthy individuals, including microbiome signatures
enriched for potential pathobionts of Streptococcus,
Gemella and Haemophilus [38]. There were also func-
tional shifts in microbiome-wide gene signatures associ-
ated with metabolic imbalance (primed to generate excess
ammonia) providing a microbial explanation for dry alka-
line pH changes associated with eczema flares [38]. These
findings illustrate how the skin microbial communities,
the surface microenvironment and the immune system
cross-modulate each other to perpetuate inflammation.

Links between the skin microbiome and systemic immune
regulation
The skin manufactures and metabolizes steroid hor-
mones, peptide neurohormones and neurotransmitters,

Fig. 2 Both exogenous and endogenous factors interact with the physical and functional aspects of the skin barrier unit – through effects on
both host cells and the skin microbiome – to alter both the integrity and the activity (hormonal, metabolic, and immune) of the skin
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including some which are further disseminated by sweat
and sebum [39]. These chemicals make contact with cu-
taneous microbes and influence adhesion, growth and
virulence. For example, experimental studies provide a
pathway between psychological stress-induced increases
in local Substance P production [40] and changes in skin
microbiota [41, 42]. Increased Substance P is linked to
eczema, acne and barrier dysfunction [43–45]. However,
paradigm-shifting studies have allowed for an entirely
different perspective, in which pathology is not entirely
mediated in a unidirectional manner from brain to skin.
New research places epidermal keratinocytes at the fore-
front of sensory systems, recognizing that they generate
a variety of hormones and neurotransmitters that influ-
ence whole-body states and even emotions [46]. This in-
cludes not only the sensors of mechanical stress,
temperature and chemical stimuli, but the capacity for
glucocorticoid production via elements of the local
hypothalamic-pituitary-adrenal (HPA) axis – acting as
an independent steroidogenic organ [47]. Skin stressors
including dryness and barrier disruption have been
shown to stimulate cutaneous cortisol production, and
this action may be mediated through activation of in-
flammatory cytokines such as IL-1β with systemic impli-
cations [48].
These hitherto unrecognized functions suggest that

the skin plays an important role in adapting whole-
body physiology to changing environments, and raises
new questions about the impact of the local skin
microbiome, acting by itself or interacting with gut
microbiome [49], on these numerous systemic activ-
ities. As has been described for gut microbiome, the
activities of the cutaneous microbiome are likely to
extend far beyond local effects in the skin.
There is already clear evidence that both innate and

adaptive immune function in the skin are influenced by
the commensal skin microbiota [3, 50], including inhib-
ition of pathogens, inflammation, immune development
and homeostasis, repair and angiogenesis and T cell dif-
ferentiation [51]. In studies involving germ-free mice,
the absence of commensal skin bacteria compromises
normal immune responses, most notably cytokine pro-
duction [52]. Research using in vivo tissue fluorescence
reveals a constitutive expression of tumor necrosis factor
in the skin of healthy adult mice without signs of cuta-
neous inflammation. However, microbiota depletion
eliminates this normal physiological function [53].
This microbiota-influenced local production of im-

mune chemicals in the skin may have far-reaching sys-
temic effects on immune regulation. This has been
demonstrated in animal models, notably those examin-
ing the effects of environmental bacteria on allergic re-
sponses in distal organs such as the airways. It has been
long recognized that exposure to rural environments

rich in apathogenic bacteria, such as species of Acineto-
bacter, is associated with the inhibition of the develop-
ment of allergic responses in humans. Notably, this
association connects maternal exposure in pregnancy
with reduced allergic risk in offspring [54]. Remarkably,
Acinetobacter lwoffii isolated from these traditional
farming environments (in rural Germany) and adminis-
tered intra-nasally to pregnant animals can prevent the
development of an asthmatic phenotype in the progeny
[55]; a microbial induced Type 1 T helper (Th1) cell
dependent effect mediated by epigenetic changes in the
IFN gene [56].
In the animal model, heat-killed A. lwoffii applied

to the skin intradermally was shown to induce strong
Th1 and anti-inflammatory and regulatory IL-10 re-
sponses locally in the skin, and that this then pro-
tected against systemic allergic sensitization and lung
inflammation [57]. This is compelling evidence that
skin commensals can play an important role in
modulating systemic immune responses, including the
propensity for systemic inflammation and has wider
implications for other inflammatory NCDs (Fig. 3). It
also provides another mechanism by which nature-
relatedness (a person’s level of connectedness with the
natural world [58]), biodiversity of ecosystems in
which humans reside or to which they are exposed,
access to greenspace and/or habitation in rural envi-
ronments can have beneficial effects on physical and
mental wellbeing [59].
In humans, the load of the gammaproteobacteria

Acinetobacter on the skin of healthy teenage school
children has been correlated with IL-10 expression in
peripheral blood mononuclear cells [4]. Notably,
atopic individuals have lower diversity of gammapro-
teobacteria on their skin, related to reduced environ-
mental biodiversity of the home surroundings [4]. As
IL-10 is an important regulatory cytokine this pro-
vides further evidence of an important link between
the health and diversity of the environment at large
and the health and diversity of human microbiomes,
underscoring the significance of these interconnec-
tions for human health. Moreover, new research has
linked remarkably low rates of allergy in asthma, al-
lergic rhinitis and eczema in rural Karelia in North-
Western Russia with cutaneous Acinetobacter. Insu-
lated against westernization, this population maintains
a traditional lifestyle in close contact with natural en-
vironments. Compared to residents of the geographic-
ally close (yet more westernized) Karelia region of
neighboring Finland, rates of eczema are 10 times
lower. Interestingly, the abundance and diversity of
the Acinteobacter genus was much higher in Russian
Karelia. Compared to Finnish children, the abundance
of Acinetobacter was on average 3 times higher on
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the skin and 4 times higher on the nasal epithelium.
There were also significantly higher levels of the
aforementioned A. lwoffii on the skin [60].
Further studies are needed to investigate links with the

risk of other NCDs, but it is noteworthy that animal
models already illustrate connections between skin or
oral contact with other non-pathogenic soil microbes,
such as Mycobacteria vaccae and systemic regulatory
immune function – and that this even has the capacity
to influence the brain and behaviour [61, 62]. Many
studies have shown that microbes, even when heat killed
[63], have effects on innate immunity, and regulate gene
expression in the brain [64], growth and glucose-insulin
metabolism [65]. Just as studies have revealed unex-
pected links between the gut microbiota and organs
such as the brain (reviewed in [66]), similar pathways
from the skin are equally likely [67].
Functional loss, or even extinction [68] of ancient spe-

cies from the human microbiome with progressive life-
style change, raises important new dimensions in the
relationship between the health of the environment and
modern inflammatory diseases [59, 69]. This includes
not only allergy and immune diseases, but many other
conditions, including mental health, that are influenced
by both the immune system and microbiome [66]. Ori-
ginal concepts of the ‘hygiene hypothesis’ have evolved
more broadly into the ‘biodiversity hypothesis’, which
recognizes that environments rich in diverse macrobiota
and microbiota have a fundamental influence on the di-
versity of human microbial ecosystems. Human health is
thus dependent upon biodiversity at the macro and mi-
cro scales [5]. The role of parasite-induced immunomo-
dulation in maintaining immune system homeostasis

and the consequences of its loss in modern societies is
also increasingly recognized [70]. This provides greater
impetus for more integrated, multisectoral approaches
to environmental and human health [71].

Early skin colonisation - developing immune tolerance to
commensal skin bacteria
In animal models, tolerance to skin commensals such
as Staphylococcus epidermidis,depends on neonatal
exposure, mediated by a wave of activated regulatory
T cells (Treg) rapidly entering skin [72]. Furthermore,
there appears to be a critical developmental window
[72], suggesting that the cutaneous microbiome com-
position in neonatal life is crucial in shaping adaptive
immune responses to commensals, and that disrupt-
ing these interactions might have lasting health impli-
cations. Accordingly, murine studies show that
dysbiosis and reduced diversity of skin microbes can
influence the development of cutaneous inflammation
and disease [72, 73]. While comparable human data
are still limited, and cause vs. consequence (or both)
is far from elucidated, there is evidence that alter-
ations in the skin microbiome predate development
of atopic dermatitis, with reduced abundance of com-
mensal staphylococci in the antecubital fossa of in-
fants later affected by disease [37]. This supports the
protective role of some commensal microbiota. It also
highlights the potential implications of perinatal prac-
tices which disrupt colonisation of the infant skin
(and mucosal surfaces) including the use of antibi-
otics, soaps and disinfectants, delivery method, per-
turbations of maternal microbiota, and the general

Fig. 3 Erosion of environmental ecosystems is affecting biodiversity and microbial ecology. Together with declining nature-relatedness this is re-
ducing human contact with immunomodulatory organisms found in natural environments – reflected in differences in skin microbes. This is in-
creasingly being recognised as a risk factor for chronic inflammatory diseases
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environmental context of the perinatal and early post-
natal period (below).
It is likely, but not yet shown, that mucosal and

skin integrity is specifically influenced by antenatal
factors including the maternal microbiome and mater-
nal environmental exposures. Maternally derived cyto-
kines, allergens and other environmental agents are
known to pass into amniotic fluid [74] and may influ-
ence developing mucosal surfaces and uncornified
fetal skin- which may be more sensitive to such expo-
sures [75]. Although contentious, it is possible that
the feto-placental unit is not ‘sterile’ and that micro-
bial colonisation of the foetus prior to birth [76, 77].
Indeed, metagenomic sequencing has revealed a rich
placental microbiome in healthy pregnancies [78], of
likely influence to developing metabolic and immune
responses in the fetus. Certainly, there is evidence
that an altered microbial composition during preg-
nancy may produce aberrant metabolites that ad-
versely affect fetal development, including neurological
outcomes [79] and cardiovascular development- with dif-
ferences in infant aortic intima-media thickness [80].
These observations underscore the need to consider ante-
natal influences on fetal microbial colonization and im-
mune development [81]. While there has been a
dominant focus on how this may modulate gut colonisa-
tion, it is not clear how this is related to the subsequent
skin ecosystem.
The maternal microbiome may play an important role

in initiating foetal immune tolerance to commensal
microbiota and therefore promoting optimal postnatal
colonisation. Potentially, factors which induce low-grade
inflammation in utero could influence or damage tight
junctional proteins that maintain skin and mucosal in-
tegrity. The resulting abnormalities of epithelial develop-
ment may predispose to very early mucosal immune
dysregulation associated with the appearance of clinical
food allergies and eczema shortly after birth [82]. It also
remains to be seen how antenatal mucosal disturbances
interfere with postnatal colonisation.
After birth, there is large-scale acquisition of skin mi-

crobes, and the composition of this complex ecosystem
is influenced by a myriad of perinatal factors including
mode of delivery (vaginal or caesarean), antibiotics, and
a range of maternal and environmental factors [33, 83,
84]. Early infant skin colonisation is also modulated by
the natural antimicrobial properties of vernix caseosa,
the protective biofilm covering the skin of the fetus dur-
ing the last trimester of pregnancy. This favors
colonization by skin commensal microbes over patho-
gens [50, 51, 84]. The anti-oxidant and wound healing
effects of vernix also protect barrier integrity (reviewed
in [84]). Thus, “routine” post-delivery washing of new-
borns with soaps and/or detergents is likely to influence

both patterns of colonization and skin barrier function.
Skin colonisation appears to evolve in complexity over
the first years of life and remains relatively unstable until
early adulthood [84, 85].
Compared to the gut, the skin microbiome appears to

have more variability over time [33] and displays wide
variability between individuals [3, 86]. Factors that
modulate the health and diversity of these maturing eco-
systems have significant potential to modulate local and
systemic immune networks and thus influence predis-
position to disease, with ongoing bi-directional interac-
tions between host and colonising microbes. The
Human Microbiome Project is continuing to examine
these complex relationships and it is hoped it will reveal
important associations between microbial signatures (of
the skin and other ecosystems) and disease predispos-
ition for novel therapeutic targets [3, 86].

Factors which can influence skin colonisation and the
subsequent ecology
In essence, everything that people touch, bathe in,
breathe, eat, and drink is reflected in their many micro-
bial ecosystems, including the skin. This underscores the
important influence of environmental conditions on col-
onizing microbiota at every age, but particularly in early
life when various surface ecosystems and immune path-
ways are being established (Fig. 4). For this reason, many
factors that influence the maternal microbiota will be
relevant to the establishment of fetal and infant colon-
isation, including nutrition, psychological stress and
medication (particularly antibiotics and biocides) [87–
89]. Infant skin colonization is also affected by maternal
hormonal influences of pregnancy which are known to
alter the cutaneous environment, sebum production, al-
though these effects are transient. Delivery method has a
major influence on initial colonizing bacteria in all habi-
tats including the infant skin [83]. Unlike vaginally deliv-
ered infants, who are colonized by bacteria from the
vaginal community, infants born by C-section are dom-
inantly colonized by Staphylococcus and other taxa
reflecting maternal skin flora [83, 90]. While the effect
of delivery method on infant gut flora persist over the
first 3–6 months of life [91]during critical windows of
immune development, the longitudinal impact on skin
colonisation patterns is less clear.
While the effects of antibiotics and dietary practices are

well studied for the gut microbiome, the effects on the
skin, especially during early life are not clear. In one re-
cent study, feeding method did not have a significant ef-
fect on the skin colonisation patterns [37]. Further studies
are needed to document how the microbial ecology of the
skin becomes established and stabilizes over the first years
of life, and how variations influence immune development
and disease risk. It is likely that the ambient environment
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has an important effect on the developing skin microbiota,
including contact with detergents and hygienic products,
soaps, moisturizers and cosmetics. The timing and fre-
quency of infant bathing after delivery is also likely to be
important. We speculate that excessive washing with de-
tergents, particularly in infants at risk of eczema, impairs
skin barrier function and alters skin colonization thereby
increasing the risk of developing eczema and sensitisation,
but further studies are needed to examine this. A protect-
ive effect of early and frequent skin moisturizing of infants
at risk of eczema has been shown in a small clinical trial
[92], however the composition of the microbiome was not
reported. There is also suggestive data that modulating
the gut flora with probiotics in infants with eczema can
modulate systemic immune responses [93], and improve
local skin disease [94]. Although the mechanisms are not
clear, it is possible that this could be mediated through
systemic modulation of both local immune responses and
the cutaneous microbiome.
Family and household contacts also have an important

influence. Closer similarities of skin commensal bacteria
between family members residing in the same home
than individuals from different households has been re-
ported [95]. Pets are a major source of household bac-
teria shedding hair, dander, saliva, faecal particulates,
and carrying soil micro-organisms. The same study
showed that pet ownership had an important effect –
with dog owners sharing more skin microbes with their
dogs, and with other household members [95]. This re-
flects differences in the biodiversity of household dust
samples depending on whether families have pets, or
have children who attend daycare [96]. New studies also
show that individuals have a unique personal microbial
‘cloud’, emitting upwards of 10 [6] biological particles
per hour, and influencing the surrounding environment

[97]. People also transfer microbial communities across
indoor surfaces [98], and the microbiome signatures of
devices such as mobile phones have been shown to
closely reflect that of their owners [99]. Other factors in-
cluding the ambient temperature, ventilation, co-
occupancy, humidity, environmental contact, air quality
and sunlight (ultraviolet) light are also likely to contrib-
ute to individual and geographic variation in skin colon-
isation [33, 100]. Differences in skin disease profile in
tropical areas, including reduced prevalence of eczema
than temperate countries [101], suggests that compara-
tive geographical studies of skin microbiota could iden-
tify specific protective factors that might be translated
for therapeutic purposes.
The skin microbiome appears to have greater variabil-

ity over time than the gut [33], suggesting that this may
be modified more readily by environmental exposures.
This has been shown with personal contact (even in
sporting activities), or changes in environment, such as
Antarctic expeditions and even space travel by astro-
nauts [102–104]. It also suggests the potential for modi-
fying intervention as preventive or therapeutic avenues.

Nature relatedness and environmental biodiversity as a
major factor in human microbial diversity
The biodiversity of the human microbiome is, to a
considerable extent, a function of the macrobiome–
the ecological health and the biodiversity of the sur-
rounding environment – and our interaction with it
[5]. At the macro scale, diverse and complex ecosys-
tems are inherently more resilient to threats and
fluctuations. It may be possible to apply ecological
theory to understand how losses in diversity at the
micro scale - within human microbial ecosystems -
may also represent a threat to health. Although there

Fig. 4 Early life is a critical period for establishment of both the microbiome and immune responses, with long term implications for health.
Understanding modulating factors during this period could lead to targets for disease prevention
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are exceptions [105, 106], the preponderance of evi-
dence suggests that overall diversity of microbes in a
select human niche equates, broadly, to health [107].
This raises many, as yet unanswered questions about
the impact of biodiversity loss on human health and
the spiraling modern burden of NCDs- as ‘green
space’ is progressively displaced by ‘grey space’ along
a gradient of urbanization [108, 109].There is now
consistent evidence that environmental degradation,
whether by climate change, invasive species or in-
dustrial activity, is linked to diminished human phys-
ical and mental health [110, 111].
While the mechanisms are complex and multifaceted

[112], the microbial biodiversity encountered through con-
tact with natural environments, especially early in life, may
be one critical factor in the reported health benefits of na-
ture relatedness [113]. There are now a number of studies
correlating validated measures of nature relatedness (NR)
with health benefits [58, 114, 115]. These NR scales assess
personal interconnectedness with nature on multiple
levels, including cognitive, affective, and physical connec-
tions. Higher scores on NR scales are associated with
spending time within outdoor natural environments [116].
While this is multifactorial, higher microbial exposure

in traditional environments is likely to be an important
component of the disease protective effects. For ex-
ample, contact with microbial endotoxin is a major fac-
tor implicated in the reduced rates of asthma and
allergic disease in traditional farming communities in
both Europe and North America [117–119]. Saprophytic
bacteria (from soil and vegetation) are increasingly rec-
ognized for their immunomodulatory effects, and the
separation from these evolutionary relationships is of
growing concern [120].
The very high taxonomic diversity of hunter-gatherer

microbiomes, such as the Hadza tribe of the East African
Rift Valley [121], provide a snapshot of what has been
eroded in urban western populations where exposures to
such bacterial assemblages have diminished. Individuals
who maintain traditional non-westernized lifestyles have a
higher frequency of soil microbes found on their hands
[122]. Differences in cutaneous microbiota of rural com-
pared with urban adults [123] suggest that contemporary
cities and lifestyle behaviours are separating humans from
microbialexposures in the external environment with
which they evolved [108]. As noted in a World Allergy
Organization Consensus Statement: “Biodiversity loss leads
to reduced interaction between environmental and human
microbiotas. This in turn may lead to immune dysfunction
and impaired tolerance mechanisms in humans” [124].The
effects of biodiversity on immune health have implications
for not only allergy [124]and autoimmune disease [125],
but many inflammatory NCDs, including mental health
disorders [59, 126].

The indoor microbiome in house dust samples reflects
the external environmental and house dust from urban
homes is relatively less diverse in microbial components
compared to dust in rural homes [127]. Skin Proteobac-
teria are more frequent in people living near agricultural
and forest environments [5]. Even within urban settings
the amount of ‘green space’ and biodiversity in the vege-
tation surrounding the primary residence is an import-
ant determinant of commensal skin bacteria [4, 120].
Soil microbial communities in city parks are different
from forests and are shaped by vegetation type and the
age of the park [128]. In a study of four cohorts com-
prising 1044 children from Finland and Estonia, closer
contact with forest and agricultural land (within 2–5 km
of the home) was associated with significantly reduced
risk of allergic sensitization, and early exposure to ‘green’
environments was especially protective [120]. Moreover,
the authors observed that land use and environmental
biodiversity contributed to 20% of the variance in rela-
tive abundance of Proteobacteria on the skin of healthy
individuals. This is also consistent with previous studies
showing the protective effect of early-life exposure to
rural environments and animals against the development
of asthma and allergies [85, 86, 129]. Although, this link
has not been causally proven in humans, collectively
these data support the hypothesis of a strong environ-
mental effect on the potentially immunogenic com-
mensal microbiota derived from natural environments,
and that cutaneous contact is an important pathway.
Even the microbiome signatures of the air people

breathe are different in ‘green’ versus ‘grey’ environments
[130].Vegetation makes a significant contribution to the
airborne microbial content – up to 10-fold higher than
nearby non-vegetated built areas [131]. Air sampling
studies have shown that airborne bacterial communities
from parks are different from parking lots, with the pro-
portion of vegetated area within a 50 m radius of sam-
pling stations explaining 15% of microbial composition
variation [130]. This illustrates the extent of potential
interaction between the personal human microbiome
‘cloud’ and the ambient environment, not merely
through contact with plants and soils, pets, water and
food, but even the surrounding air.
Since the dermis is not a complete barrier, but rather a

filter to microbial access to deeper dermal stroma [132],
it is not surprising that cutaneous microbes derived from
soils, air and plants can influence systemic immune
function. As noted above, the level of skin Proteobac-
teria in teenagers is positively correlated with baseline
expression of anti-inflammatory IL-10 by peripheral
blood mononuclear cells [4], and similar organisms con-
ferred protection against allergic responses in mice [57].
Aside from the effects of skin Proteobacteria (discussed
above), other non-pathogenic microbes (M.vaccae)
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found in soil and water have been shown to improve
cognition, anxiety and have other neurological benefits
in rodent models when added to food [133, 134] or ad-
ministered through the skin (subcutaneous heat-
inactivated M. vaccae) [135]. Potential mechanisms in-
clude suppression of inflammatory responses and upreg-
ulation of CD4 + CD25 + Foxp3+ regulatory T cells and
suggest that the immune system is a central pathway
mediating the effects of nature on health [108].
With this background we can turn toward a practical

way in which NR can confound research. Although a
fairly robust body of research links domestic dog owner-
ship with reduced risk of eczema in children [136, 137],
the mechanisms behind this relationship are obscure. As
mentioned above, dog ownership is associated with co-
sharing cutaneous microbes with the pet. However, NR
is associated with pet ownership [58]. Thus, if NR itself
(and/or other psychological attributes) drives toward the
desire to cohabitate with a dog in the first place, it may
also be associated with a set of lifestyle factors – spend-
ing time outdoors, physical activity, stress reduction -
that might push toward unique, and protective, micro-
bial assets. The links between dog ownership, the human
microbiome and immune functioning are extremely
complex; they cannot be separated from the larger eco-
system and the biopsychosocial context.

Strategies to promote the health and integrity of the skin
and its microbial communities as potential pathways to
preventing disease
Promoting optimal establishment of human microbial
communities for long term health will ultimately depend
on approaches at both the societal and individual level.
Unless the greater adverse forces affecting the ecology of
the wider urban environment are addressed, the benefits
of individual strategies may be limited. On the larger
scale, social determinants of health extend beyond the
well-recognised lifestyle risk factors (diet, exercise) for
disease, to the ecological determinants of health
[138].This calls for integrated approaches that span all
aspects of urban design and city planning, and which en-
courage human interaction with nature, plants, soils and
clean air – making cities into microbe-friendly environ-
ments [139]. Environmental remediation and restoring
‘green’ space in urban blight can have many health bene-
fits (reviewed in [59]).This can be achieved in aesthetic
ways that also promote biodiversity [140]. Importantly,
relatively simple transformation of vacant urban lots
with trees and other forms of vegetation can have wider
physical, mental and social benefits [141, 142]. Strategies
to improve the quality and diversity of urban green
spaces and plant communities will improve the health of
urban systems and urban microbiomes, including those
of humans [4, 128].

But better access to ‘green space’ is only part of the
story. Healthier ‘living’ buildings are also required to en-
courage the growth of healthy ecosystem through the
use of bioreceptive materials with textures and pH that
encourage microbes and plants to grow naturally [143].
Achieving these goals will depend on increasing the
health of the ‘external’ environment and ‘bringing the
outside in’ – with opportunities for introducing and/or
cultivating benign microbiota in the built environment.
The quest for research indicators supportive of ‘evi-
dence-based design’ for health promotion in the modern
environment will require closer collaboration between
the medical and health sciences, urban planners and
ecologists.
With shifting perspectives around human interdepend-

ence on natural and microbial ecosystems, there are on-
going concerns about the overuse of biocides and
biostatic agents. Although aimed at sterilizing surfaces
and substances, it is unclear whether the public overuse
of such agents provides new niches for resistant oppor-
tunistic microbes, ultimately representing a threat to hu-
man health. This is increasingly seen in clinical settings
where unwell patients may be more vulnerable, and is of
particular relevance in the neonatal setting. While redu-
cing the threat of infection during the perinatal period is
arguably the most significant achievement in reducing
maternal and infant mortality, there is little doubt that
antibiotics and biocides have had unintended conse-
quences. Strategies to improve maternal and neonatal
colonisation are now increasingly explored to promote
optimal metabolic and immune health. It is now recog-
nised that protecting the vulnerable developing ecosys-
tems of the neonate, especially in preterm infants, is not
best served by antibiotics alone with prebiotics and pro-
biotics now routinely used to reduce the risk of life-
threatening conditions such as necrotising enterocolitis
in many centres [144–146].
Aside from infant bathing practices (discussed above),

early microbial intervention may be particularly relevant
for infants delivered by C-section, who are otherwise de-
ficient in the normal vaginal inoculum [83]. Practices,
such as seeding the skin of C-section infants by swab-
bing the infants mouth, face and body with maternal va-
ginal microbes [84] can partially restore cutaneous and
mucosal microbiota of these infants [90], and are in-
creasingly commonly performed. In this context, it is
critical to exclude maternal carriage of pathogens such
as group B Streptococcus (GBS) and further studies are
needed to examine the longer-term effects.
Akin to faecal transplants for gastrointestinal health,

researchers have experimented with skin microbiota
transfer. Transplanting microbiota from the forearm to
forehead demonstrates relatively rapid assimilation to
the native microbial profile at transplanted site (forehead),
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indicating that environmental characteristics play a strong
role in shaping skin bacterial communities at sebaceous
sites such as the forehead [147]. However, this does not
preclude the transfer of healthy donor microbes from and
to similar anatomical locations where dysbiosis may be a
factor in lesions. Indeed, new research in an animal model
of atopic dermatitis shows that the transfer of live mi-
crobes derived from healthy human cutaneous tissue can
enhance barrier function, modulate innate immunity acti-
vation, and control the overgrowth of S. aureus that typic-
ally accompanies skin inflammation [148]. Such research
not only points to dysbiosis as a causative factor, it also
opens the door of therapeutic possibility for the use of
healthy donor microbiota in many skin pathologies.
Along the same lines, emerging research suggests

promise for the topical delivery of specific live microor-
ganisms, microbial lysates, and/or prebiotic substrates
that selectively promote cutaneous microbial growth
[149–151]. Although the research supporting such appli-
cations remains limited, there is evidence that the topical
applications of probiotics can enhance local barrier func-
tion and immune responses at the site of application
(reviewed in [152]). There are also preliminary studies
indicating that emollients supplemented with nonpatho-
genic bacteria (Vitreoscilla filiformis) can regulate the
skin microbiome, restore the barrier function and reduce
eczema flares [153, 154]. Moreover, prebiotic fiber such
as glucomannan has been the subject of recent experi-
mental and clinical work; in vitro research suggest prebi-
otics might selectively inhibit pathogenic bacteria [155],
while a small clinical trial showed that topical applica-
tion of glucomannan at 5% improved acne lesions [156].
While far from unequivocal, there is evidence from hu-

man intervention studies that orally ingested prebiotics
and probiotics can have systemic immune benefits that
may be manifest in the skin. These benefits may extend to
a reduced risk of allergic disease in early life (reviewed in
[157, 158]). In a recent clinical trial inclusive of skin bi-
opsy, oral probiotics were shown to influence gene expres-
sion of cutaneous IGF-1 and forkhead box protein O1
(FOXO1), both of which can regulate skin inflammation
and local repair processes [159]. Preclinical studies show
that orally ingested probiotics can positively influence the
integrity of the stratum corneum, reduce the generation of
radical oxygen species and prevent TEWL under the stress
of ultraviolet radiation [160].
More than a decade has passed since the use of oral pro-

biotics was hypothesized to lower fatigue and depressive
symptoms [161, 162]. While the overall pool of studies re-
mains small, meta-analyses of published intervention
studies supports these original ideas; probiotics have been
shown to improve emotional outlook and anxiety [163,
164]. Thus, oral bacteriotherapy might improve the skin
barrier via psychoneuroimmunological pathways [66].

Studies indicate that orally consumed probiotics can influ-
ence the nasal microbiome [165], and manipulation of gut
microbes can shift the lung microbiome [166]. However, it
is remarkable that amongst volumes of preclinical re-
search and multiple human intervention studies demon-
strating benefit of oral probiotics in atopic dermatitis (and
other skin conditions where the barrier may be compro-
mised), there has been no attention paid to whether the
success with oral bacteriotherapy is mediated by alter-
ations to the cutaneous microbiome. An urgent question
remains: are oral probiotics influencing skin microbes?
Finally, while commercial interests are slanted towards

product development, it is critical to emphasise the im-
portance of holistic measures which promote a healthy
relationship with environments and ecosystems – espe-
cially in very young children. From a scientific perspec-
tive, the connections between experience in outdoor
natural environments, exposure to microbial biodiver-
sity, and enduring aspects of health require further
study. However, there are multiple, collateral benefits as-
sociated with outdoor play in overall childhood health
and development. More balanced indoor (screen) time
with increased outdoor play time has overlapping bene-
fits on sleep [167], academic achievement [168] and
mental health [169]. Childhood experience of nature also
builds emotional affinity for natural environments and
the motivation to protect biodiversity in adulthood
[170–173] and thereby improve the chance of ‘paying
forward’ ecosystem health for generations to come.

Metagenomic elements and clinical ecology
The available evidence suggests that the skin will follow
in the same direction as the more robust body of re-
search concerning the gut microbiome – that is, a high
degree of individuality and strain-level differences in the
microbiome that will likely be the ‘fingerprint’ of the
presence or absence of disease. As mentioned earlier, the
major limitation of the accumulated microbiome re-
search has been lack of identification below phyla and
species level. However, examination of the gut micro-
biome at the strain level has revealed remarkable func-
tional differences within the same species [174].
Recent investigations involving the skin microbiome

suggest a similar species-level fingerprint. Metagenomic
shotgun sequencing is overcoming the lack of molecular
insight provided by phylogenetic marker-based sequen-
cing. New research involving patients with acne provides
an elegant example of clinically-relevant knowledge pro-
vided by ultra-deep sequencing. Historically, Propioni-
bacterium acnes has been considered a causative agent
in acne. With only limited success [175], treatment ap-
proaches are often driven toward complete elimination
of this species from the follicle. However, a closer look
using metagenomic shotgun sequencing reveals that a
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high percentage of Propionibacterium in general, and P.
acnes phage in particular, is characteristic of healthy
skin. At the species and strain level acne patients had a
greater diversity of P. acnes with enriched virulence-
associated factors and reduced abundance of metabolic
synthesis genes [176].
The results of this new study suggest that future bac-

teriotherapy will transcend the ‘cannonball’ targeting of
an entire genus and work toward supporting the growth
of beneficial cutaneous microbial strains, while at the
same time attempting to selectively limit the growth of
barrier-disturbing, disease-causing strains. In order to
achieve this aim, the most obvious approaches will be
very selective agents. However, future therapeutics might
also address the entire microbial ecosystem in a holistic
manner. In other words, solutions might be found by
asking ‘what are the upstream causative factors that shift
entire microbial communities?’, changes that in turn,
allow for the emergence of virulent strains within the
community. Although our focus is on the skin micro-
biome and increasing rates of allergic skin diseases, acne
is no less a disease of westernization [177, 178].

Conclusions
The skin ecosystem and its many commensal communi-
ties comprise a functional sensory unit which produces
previously unrecognized systemic signals through both
keratinocytes, specialised antigen presenting cells and
the cutaneous immune networks. The recent discovery
that the skin is an independent steroidogenic organ, with
the capacity to influence whole-body states and emo-
tions [46, 47], provides new perspective to the central
importance of microbial communities and cutaneous
homeostasis. Abnormal skin colonisation may contribute
to abnormalities of epithelial development, integrity and
predispose to local and systemic immune dysregulation
– often first manifest as food allergy and eczema. Under-
standing these pathways may lead to therapeutic ap-
proaches to not only prevent and treat inflammatory
skin disease, but other systemic conditions. The import-
ance of the early environment in the life-long risk of
NCDs also underscores the need to take a developmen-
tal approach to optimising colonising ecosystems.
The fundamental influence of the health of ecosystems

in which humans live, on the diversity of human skin
and mucosal microbiota, underscores the relevance of
climate change, rapid urbanization, environmental deg-
radation and gross biodiversity loss to human health, in-
cluding the modern disconnection from nature [59]. We
cannot truly promote health without widening our view
to the wider dysbiosis of Earth’s ecosystems [109] and the
reality that NCDs will be increasingly driven by loss of, or
degradation of, these ecosystems at the macrobiological
and microbiological levels. As we learn more about the

microbiome it is obvious that personalized medicine must
move toward a new clinical ecology, in which the external
world (of our lifestyle within and around our habitat) mat-
ters to the ecosystems of our skin, intestinal and other
personal habitats [59].
The evolutionary-rooted relationships with our micro-

biota are mediated at the immune interface and inter-
twined with the global burden of NCDs. Thus, there is a
need to explore microbial solutions in early life through
nature contact, controlled seeding of microbes and
clever urban environmental design [61, 90, 179]. In
order to accomplish this, a better understanding of inter-
connected ecology of humans, microbes and the envir-
onment is required. This does not necessarily mean
forsaking technology and modern conveniences to re-
turn ‘back to nature’, it nonetheless means striking a new
balance for ecological justice which ensures more equit-
able access to healthy natural environments, fresh
healthy, minimally-processed foods and healthy urban
systems [59]. By moving ‘forward with nature’, working
with microbes on the skin and countless other niches,
we can support a terrain of health. With this approach
we may have the best chance of improving both human
and environmental health for future generations.
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