Johansson MW. Activation states of blood eosinophils in asthma. Clin Exp Allergy. 2014;44(4):482–98. doi:10.1111/cea.12292.
Article
PubMed Central
CAS
PubMed
Google Scholar
Johansson MW, Mosher DF. Integrin activation states and eosinophil recruitment in asthma. Front Pharmacol. 2013;4:33. doi:10.3389/fphar.2013.00033.
Article
PubMed Central
CAS
PubMed
Google Scholar
Rosenberg HF, Dyer KD, Foster PS. Eosinophils: changing perspectives in health and disease. Nat Rev Immunol. 2013;13(1):9–22. doi:10.1038/nri3341.
Article
PubMed Central
CAS
PubMed
Google Scholar
Driss V, Legrand F, Capron M. Eosinophils receptor profile. In: Lee J, Rosenberg HF, editors. Eosinophils in health and disease. 1st ed. Waltham: Elsevier/Academic Press; 2013. p. 30–8.
Google Scholar
Johnsson M, Bove M, Bergquist H, Olsson M, Fornwall S, Hassel K, et al. Distinctive blood eosinophilic phenotypes and cytokine patterns in eosinophilic esophagitis, inflammatory bowel disease and airway allergy. J Innate Immun. 2011;3(6):594–604. doi:10.1159/000331326.
Article
CAS
PubMed
Google Scholar
Lingblom C, Bergquist H, Johnsson M, Sundstrom P, Quiding-Jarbrink M, Bove M, et al. Topical corticosteroids do not revert the activated phenotype of eosinophils in eosinophilic esophagitis but decrease surface levels of CD18 resulting in diminished adherence to ICAM-1, ICAM-2, and endothelial cells. Inflammation. 2014;37(6):1932–44. doi:10.1007/s10753-014-9926-x.
Article
CAS
PubMed
Google Scholar
Simon HU, Plotz S, Simon D, Seitzer U, Braathen LR, Menz G, et al. Interleukin-2 primes eosinophil degranulation in hypereosinophilia and Wells’ syndrome. Eur J Immunol. 2003;33(4):834–9. doi:10.1002/eji.200323727.
Article
CAS
PubMed
Google Scholar
Straumann A, Kristl J, Conus S, Vassina E, Spichtin HP, Beglinger C, et al. Cytokine expression in healthy and inflamed mucosa: probing the role of eosinophils in the digestive tract. Inflamm Bowel Dis. 2005;11(8):720–6.
Article
PubMed
Google Scholar
Hansel TT, Braunstein JB, Walker C, Blaser K, Bruijnzeel PL, Virchow Jr JC, et al. Sputum eosinophils from asthmatics express ICAM-1 and HLA-DR. Clin Exp Immunol. 1991;86(2):271–7.
Article
PubMed Central
CAS
PubMed
Google Scholar
Toma T, Mizuno K, Okamoto H, Kanegane C, Ohta K, Ikawa Y, et al. Expansion of activated eosinophils in infants with severe atopic dermatitis. Pediatr Int. 2005;47(1):32–8. doi:10.1111/j.1442-200x.2004.02004.x.
Article
PubMed
Google Scholar
Stein ML, Collins MH, Villanueva JM, Kushner JP, Putnam PE, Buckmeier BK, et al. Anti-IL-5 (mepolizumab) therapy for eosinophilic esophagitis. J Allergy Clin Immunol. 2006;118(6):1312–9. doi:10.1016/j.jaci.2006.09.007.
Article
CAS
PubMed
Google Scholar
Kita H, Adolphoson CR, Gleich GJ. Biology of eosinophils. In: Adkinson NF, Yunginger JW, Busse WW, Bochner BS, Holgate ST, Simons FER, editors. Middleton’s allergy: principles & practice. 6th ed. St. Louis: Mosby; 2003. p. 305–32.
Google Scholar
Gleich GJ, Loegering DA, Mann KG, Maldonado JE. Comparative properties of the Charcot-Leyden crystal protein and the major basic protein from human eosinophils. J Clin Invest. 1976;57(3):633–40. doi:10.1172/JCI108319.
Article
PubMed Central
CAS
PubMed
Google Scholar
Barker RL, Gleich GJ, Pease LR. Acidic precursor revealed in human eosinophil granule major basic protein cDNA. J Exp Med. 1988;168(4):1493–8.
Article
CAS
PubMed
Google Scholar
Plager DA, Loegering DA, Weiler DA, Checkel JL, Wagner JM, Clarke NJ, et al. A novel and highly divergent homolog of human eosinophil granule major basic protein. J Biol Chem. 1999;274(20):14464–73.
Article
CAS
PubMed
Google Scholar
Soragni A, Yousefi S, Stoeckle C, Soriaga AB, Sawaya MR, Kozlowski E, et al. Toxicity of eosinophil MBP is repressed by intracellular crystallization and promoted by extracellular aggregation. Mol Cell. 2015;57(6):1011–21. doi:10.1016/j.molcel.2015.01.026.
Article
CAS
PubMed
Google Scholar
Woschnagg C, Rubin J, Venge P. Eosinophil cationic protein (ECP) is processed during secretion. J Immunol. 2009;183(6):3949–54. doi:10.4049/jimmunol.0900509.
Article
CAS
PubMed
Google Scholar
Koh GC, Shek LP, Goh DY, Van Bever H, Koh DS. Eosinophil cationic protein: is it useful in asthma? A systematic review. Respir Med. 2007;101(4):696–705. doi:10.1016/j.rmed.2006.08.012.
Article
PubMed
Google Scholar
Lowhagen O, Wever AM, Lusuardi M, Moscato G, De Backer WA, Gandola L, et al. The inflammatory marker serum eosinophil cationic protein (ECP) compared with PEF as a tool to decide inhaled corticosteroid dose in asthmatic patients. Respir Med. 2002;96(2):95–101.
Article
CAS
PubMed
Google Scholar
Bjork A, Venge P, Peterson CG. Measurements of ECP in serum and the impact of plasma coagulation. Allergy. 2000;55(5):442–8.
Article
CAS
PubMed
Google Scholar
Plotz SG, Simon HU, Darsow U, Simon D, Vassina E, Yousefi S, et al. Use of an anti-interleukin-5 antibody in the hypereosinophilic syndrome with eosinophilic dermatitis. N Engl J Med. 2003;349(24):2334–9. doi:10.1056/NEJMoa031261.
Article
PubMed
Google Scholar
Sur S, Glitz DG, Kita H, Kujawa SM, Peterson EA, Weiler DA, et al. Localization of eosinophil-derived neurotoxin and eosinophil cationic protein in neutrophilic leukocytes. J Leukoc Biol. 1998;63(6):715–22.
CAS
PubMed
Google Scholar
Wang JG, Mahmud SA, Thompson JA, Geng JG, Key NS, Slungaard A. The principal eosinophil peroxidase product, HOSCN, is a uniquely potent phagocyte oxidant inducer of endothelial cell tissue factor activity: a potential mechanism for thrombosis in eosinophilic inflammatory states. Blood. 2006;107(2):558–65. doi:10.1182/blood-2005-05-2152.
Article
PubMed Central
CAS
PubMed
Google Scholar
Henderson WR, Jorg A, Klebanoff SJ. Eosinophil peroxidase-mediated inactivation of leukotrienes B4, C4, and D4. J Immunol. 1982;128(6):2609–13.
CAS
PubMed
Google Scholar
Ulrich M, Petre A, Youhnovski N, Promm F, Schirle M, Schumm M, et al. Post-translational tyrosine nitration of eosinophil granule toxins mediated by eosinophil peroxidase. J Biol Chem. 2008;283(42):28629–40. doi:10.1074/jbc.M801196200.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ackerman SJ, Corrette SE, Rosenberg HF, Bennett JC, Mastrianni DM, Nicholson-Weller A, et al. Molecular cloning and characterization of human eosinophil Charcot-Leyden crystal protein (lysophospholipase). Similarities to IgE binding proteins and the S-type animal lectin superfamily. J Immunol. 1993;150(2):456–68.
CAS
PubMed
Google Scholar
Weller PF, Bach DS, Austen KF. Biochemical characterization of human eosinophil Charcot-Leyden crystal protein (lysophospholipase). J Biol Chem. 1984;259(24):15100–5.
CAS
PubMed
Google Scholar
Leonidas DD, Elbert BL, Zhou Z, Leffler H, Ackerman SJ, Acharya KR. Crystal structure of human Charcot-Leyden crystal protein, an eosinophil lysophospholipase, identifies it as a new member of the carbohydrate-binding family of galectins. Structure. 1995;3(12):1379–93.
Article
CAS
PubMed
Google Scholar
Ackerman SJ, Weil GJ, Gleich GJ. Formation of Charcot-Leyden crystals by human basophils. J Exp Med. 1982;155(6):1597–609.
Article
CAS
PubMed
Google Scholar
Ackerman SJ, Liu L, Kwatia MA, Savage MP, Leonidas DD, Swaminathan GJ, et al. Charcot-Leyden crystal protein (galectin-10) is not a dual function galectin with lysophospholipase activity but binds a lysophospholipase inhibitor in a novel structural fashion. J Biol Chem. 2002;277(17):14859–68. doi:10.1074/jbc.M200221200.
Article
CAS
PubMed
Google Scholar
Kubach J, Lutter P, Bopp T, Stoll S, Becker C, Huter E, et al. Human CD4 + CD25+ regulatory T cells: proteome analysis identifies galectin-10 as a novel marker essential for their anergy and suppressive function. Blood. 2007;110(5):1550–8. doi:10.1182/blood-2007-01-069229.
Article
CAS
PubMed
Google Scholar
Acharya KR, Ackerman SJ. Eosinophil granule proteins: form and function. J Biol Chem. 2014;289(25):17406–15. doi:10.1074/jbc.R113.546218.
Article
PubMed Central
CAS
PubMed
Google Scholar
Furuta GT, Kagalwalla AF, Lee JJ, Alumkal P, Maybruck BT, Fillon S, et al. The oesophageal string test: a novel, minimally invasive method measures mucosal inflammation in eosinophilic oesophagitis. Gut. 2013;62(10):1395–405. doi:10.1136/gutjnl-2012-303171.
Article
PubMed Central
CAS
PubMed
Google Scholar
Chua JC, Douglass JA, Gillman A, O’Hehir RE, Meeusen EN. Galectin-10, a potential biomarker of eosinophilic airway inflammation. PLoS One. 2012;7(8):e42549. doi:10.1371/journal.pone.0042549.
Article
PubMed Central
CAS
PubMed
Google Scholar
De Re V, Simula MP, Cannizzaro R, Pavan A, De Zorzi MA, Toffoli G, et al. Galectin-10, eosinophils, and celiac disease. Ann N Y Acad Sci. 2009;1173:357–64. doi:10.1111/j.1749-6632.2009.04627.x.
Article
PubMed
CAS
Google Scholar
Bryborn M, Hallden C, Sall T, Cardell LO. CLC- a novel susceptibility gene for allergic rhinitis? Allergy. 2010;65(2):220–8. doi:10.1111/j.1398-9995.2009.02141.x.
Article
CAS
PubMed
Google Scholar
Abu-Ghazaleh RI, Dunnette SL, Loegering DA, Checkel JL, Kita H, Thomas LL, et al. Eosinophil granule proteins in peripheral blood granulocytes. J Leukoc Biol. 1992;52(6):611–8.
CAS
PubMed
Google Scholar
Durack DT, Ackerman SJ, Loegering DA, Gleich GJ. Purification of human eosinophil-derived neurotoxin. Proc Natl Acad Sci U S A. 1981;78(8):5165–9.
Article
PubMed Central
CAS
PubMed
Google Scholar
Domachowske JB, Dyer KD, Bonville CA, Rosenberg HF. Recombinant human eosinophil-derived neurotoxin/RNase 2 functions as an effective antiviral agent against respiratory syncytial virus. J Infect Dis. 1998;177(6):1458–64.
Article
CAS
PubMed
Google Scholar
Sorrentino S, Glitz DG, Hamann KJ, Loegering DA, Checkel JL, Gleich GJ. Eosinophil-derived neurotoxin and human liver ribonuclease. Identity of structure and linkage of neurotoxicity to nuclease activity. J Biol Chem. 1992;267(21):14859–65.
CAS
PubMed
Google Scholar
Yang D, Chen Q, Rosenberg HF, Rybak SM, Newton DL, Wang ZY, et al. Human ribonuclease A superfamily members, eosinophil-derived neurotoxin and pancreatic ribonuclease, induce dendritic cell maturation and activation. J Immunol. 2004;173(10):6134–42.
Article
PubMed Central
CAS
PubMed
Google Scholar
Yang D, Chen Q, Su SB, Zhang P, Kurosaka K, Caspi RR, et al. Eosinophil-derived neurotoxin acts as an alarmin to activate the TLR2-MyD88 signal pathway in dendritic cells and enhances Th2 immune responses. J Exp Med. 2008;205(1):79–90. doi:10.1084/jem.20062027.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ackerman SJ, Kephart GM, Francis H, Awadzi K, Gleich GJ, Ottesen EA. Eosinophil degranulation. An immunologic determinant in the pathogenesis of the Mazzotti reaction in human onchocerciasis. J Immunol. 1990;144(10):3961–9.
CAS
PubMed
Google Scholar
Konikoff MR, Blanchard C, Kirby C, Buckmeier BK, Cohen MB, Heubi JE, et al. Potential of blood eosinophils, eosinophil-derived neurotoxin, and eotaxin-3 as biomarkers of eosinophilic esophagitis. Clin Gastroenterol Hepatol. 2006;4(11):1328–36. doi:10.1016/j.cgh.2006.08.013.
Article
CAS
PubMed
Google Scholar
Subbarao G, Rosenman MB, Ohnuki L, Georgelas A, Davis M, Fitzgerald JF, et al. Exploring potential noninvasive biomarkers in eosinophilic esophagitis in children. J Pediatr Gastroenterol Nutr. 2011;53(6):651–8. doi:10.1097/MPG.0b013e318228cee6.
CAS
PubMed
Google Scholar
Kim CK, Seo JK, Ban SH, Fujisawa T, Kim DW, Callaway Z. Eosinophil-derived neurotoxin levels at 3 months post-respiratory syncytial virus bronchiolitis are a predictive biomarker of recurrent wheezing. Biomarkers. 2013;18(3):230–5. doi:10.3109/1354750X.2013.773078.
Article
CAS
PubMed
Google Scholar
Schulman ES, Kagey-Sobotka A, MacGlashan Jr DW, Adkinson Jr NF, Peters SP, Schleimer RP, et al. Heterogeneity of human mast cells. J Immunol. 1983;131(4):1936–41.
CAS
PubMed
Google Scholar
Casale TB, Wood D, Richerson HB, Trapp S, Metzger WJ, Zavala D, et al. Elevated bronchoalveolar lavage fluid histamine levels in allergic asthmatics are associated with methacholine bronchial hyperresponsiveness. J Clin Invest. 1987;79(4):1197–203. doi:10.1172/JCI112937.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kaplan AP, Horakova Z, Katz SI. Assessment of tissue fluid histamine levels in patients with urticaria. J Allergy Clin Immunol. 1978;61(6):350–4.
Article
CAS
PubMed
Google Scholar
Pollock I, Murdoch RD, Lessof MH. Plasma histamine and clinical tolerance to infused histamine in normal, atopic and urticarial subjects. Agents Actions. 1991;32(3–4):359–65.
Article
CAS
PubMed
Google Scholar
Granerus G, Lonnqvist B, Wass U. Determination of the histamine metabolite tele-methylimidazoleacetic acid and of creatinine in urine by the same HPLC system. Inflamm Res. 1999;48(2):75–80.
Article
CAS
PubMed
Google Scholar
Keyzer JJ, de Monchy JG, van Doormaal JJ, van Voorst Vader PC. Improved diagnosis of mastocytosis by measurement of urinary histamine metabolites. N Engl J Med. 1983;309(26):1603–5. doi:10.1056/NEJM198312293092603.
Article
CAS
PubMed
Google Scholar
Kolmert J, Forngren B, Lindberg J, Ohd J, Aberg KM, Nilsson G, et al. A quantitative LC/MS method targeting urinary 1-methyl-4-imidazoleacetic acid for safety monitoring of the global histamine turnover in clinical studies. Anal Bioanal Chem. 2014;406(6):1751–62. doi:10.1007/s00216-013-7594-6.
Article
CAS
PubMed
Google Scholar
Metcalfe DD, Lewis RA, Silbert JE, Rosenberg RD, Wasserman SI, Austen KF. Isolation and characterization of heparin from human lung. J Clin Invest. 1979;64(6):1537–43. doi:10.1172/JCI109613.
Article
PubMed Central
CAS
PubMed
Google Scholar
Metcalfe DD, Soter NA, Wasserman SI, Austen KF. Identification of sulfated mucopolysaccharides including heparin in the lesional skin of a patient with mastocytosis. J Invest Dermatol. 1980;74(4):210–5.
Article
CAS
PubMed
Google Scholar
Sucker C, Mansmann G, Steiner S, Gattermann N, Schmitt-Graeff A, Loncar R, et al. Fatal bleeding due to a heparin-like anticoagulant in a 37-year-old woman suffering from systemic mastocytosis. Clin Appl Thromb Hemost. 2008;14(3):360–4. doi:10.1177/1076029607309173.
Article
CAS
PubMed
Google Scholar
Seidel H, Molderings GJ, Oldenburg J, Meis K, Kolck UW, Homann J, et al. Bleeding diathesis in patients with mast cell activation disease. Thromb Haemost. 2011;106(5):987–9. doi:10.1160/TH11-05-0351.
Article
CAS
PubMed
Google Scholar
Oschatz C, Maas C, Lecher B, Jansen T, Bjorkqvist J, Tradler T, et al. Mast cells increase vascular permeability by heparin-initiated bradykinin formation in vivo. Immunity. 2011;34(2):258–68. doi:10.1016/j.immuni.2011.02.008.
Article
CAS
PubMed
Google Scholar
Pallaoro M, Fejzo MS, Shayesteh L, Blount JL, Caughey GH. Characterization of genes encoding known and novel human mast cell tryptases on chromosome 16p13.3. J Biol Chem. 1999;274(6):3355–62.
Article
CAS
PubMed
Google Scholar
Schwartz LB. Diagnostic value of tryptase in anaphylaxis and mastocytosis. Immunol Allergy Clin North Am. 2006;26(3):451–63. doi:10.1016/j.iac.2006.05.010.
Article
PubMed
Google Scholar
Le QT, Gomez G, Zhao W, Hu J, Xia HZ, Fukuoka Y, et al. Processing of human protryptase in mast cells involves cathepsins L, B, and C. J Immunol. 2011;187(4):1912–8. doi:10.4049/jimmunol.1001806.
Article
PubMed Central
CAS
PubMed
Google Scholar
Le QT, Min HK, Xia HZ, Fukuoka Y, Katunuma N, Schwartz LB. Promiscuous processing of human alphabeta-protryptases by cathepsins L, B, and C. J Immunol. 2011;186(12):7136–43. doi:10.4049/jimmunol.1001804.
Article
PubMed Central
CAS
PubMed
Google Scholar
Sverrild A, van der Sluis S, Kyvik KO, Garvey LH, Porsbjerg C, Backer V, et al. Genetic factors account for most of the variation in serum tryptase--a twin study. Ann Allergy Asthma Immunol. 2013;111(4):286–9. doi:10.1016/j.anai.2013.07.011.
Article
CAS
PubMed
Google Scholar
Alvarez-Twose I, Zanotti R, Gonzalez-de-Olano D, Bonadonna P, Vega A, Matito A, et al. Nonaggressive systemic mastocytosis (SM) without skin lesions associated with insect-induced anaphylaxis shows unique features versus other indolent SM. J Allergy Clin Immunol. 2014;133(2):520–8. doi:10.1016/j.jaci.2013.06.020.
Article
PubMed
Google Scholar
Bonadonna P, Perbellini O, Passalacqua G, Caruso B, Colarossi S, Dal Fior D, et al. Clonal mast cell disorders in patients with systemic reactions to Hymenoptera stings and increased serum tryptase levels. J Allergy Clin Immunol. 2009;123(3):680–6. doi:10.1016/j.jaci.2008.11.018.
Article
CAS
PubMed
Google Scholar
Valent P, Akin C, Arock M, Brockow K, Butterfield JH, Carter MC, et al. Definitions, criteria and global classification of mast cell disorders with special reference to mast cell activation syndromes: a consensus proposal. Int Arch Allergy Immunol. 2012;157(3):215–25. doi:10.1159/000328760.
Article
PubMed Central
PubMed
Google Scholar
Hsu FI, Boyce JA. Biology of mast cells and their mediators. In: Adkinson Jr NF, Busse WW, Bochner BS, Holgate ST, Simons FER, Lemanske Jr RF, editors. Middleton’s allergy: principles & practice. 7th ed. Philadelphia: Mosby/Elsevier; 2009. p. 311–28.
Chapter
Google Scholar
He A, Shi GP. Mast cell chymase and tryptase as targets for cardiovascular and metabolic diseases. Curr Pharm Des. 2013;19(6):1114–25.
Article
PubMed Central
CAS
PubMed
Google Scholar
Oskeritzian CA. Mast cells and wound healing. Adv Wound Care (New Rochelle). 2012;1(1):23–8. doi:10.1089/wound.2011.0357.
Article
Google Scholar
Takato H, Yasui M, Ichikawa Y, Waseda Y, Inuzuka K, Nishizawa Y, et al. The specific chymase inhibitor TY-51469 suppresses the accumulation of neutrophils in the lung and reduces silica-induced pulmonary fibrosis in mice. Exp Lung Res. 2011;37(2):101–8. doi:10.3109/01902148.2010.520815.
Article
CAS
PubMed
Google Scholar
Walter M, Sutton RM, Schechter NM. Highly efficient inhibition of human chymase by alpha(2)-macroglobulin. Arch Biochem Biophys. 1999;368(2):276–84. doi:10.1006/abbi.1999.1309.
Article
CAS
PubMed
Google Scholar
Raymond WW, Su S, Makarova A, Wilson TM, Carter MC, Metcalfe DD, et al. Alpha 2-macroglobulin capture allows detection of mast cell chymase in serum and creates a reservoir of angiotensin II-generating activity. J Immunol. 2009;182(9):5770–7. doi:10.4049/jimmunol.0900127.
Article
PubMed Central
CAS
PubMed
Google Scholar
Goldstein SM, Kaempfer CE, Kealey JT, Wintroub BU. Human mast cell carboxypeptidase. Purification and characterization. J Clin Invest. 1989;83(5):1630–6. doi:10.1172/JCI114061.
Article
PubMed Central
CAS
PubMed
Google Scholar
Fajt ML, Wenzel SE. Mast cells, their subtypes, and relation to asthma phenotypes. Ann Am Thorac Soc. 2013;10(Suppl):S158–64. doi:10.1513/AnnalsATS.201303-064AW.
Article
CAS
PubMed
Google Scholar
Takabayashi T, Kato A, Peters AT, Suh LA, Carter R, Norton J, et al. Glandular mast cells with distinct phenotype are highly elevated in chronic rhinosinusitis with nasal polyps. J Allergy Clin Immunol. 2012;130(2):410–20. doi:10.1016/j.jaci.2012.02.046. e5.
Article
PubMed Central
CAS
PubMed
Google Scholar
D’Ambrosio C, Akin C, Wu Y, Magnusson MK, Metcalfe DD. Gene expression analysis in mastocytosis reveals a highly consistent profile with candidate molecular markers. J Allergy Clin Immunol. 2003;112(6):1162–70. doi:10.1016/j.jaci.2003.07.008.
Article
PubMed
CAS
Google Scholar
Pan Q, Ding MF, Zhang S, Ning Y, Liu HW, Wei H, et al. Measurement of plasma mast cell carboxypeptidase and chymase levels in children with allergic diseases. Zhongguo Dang Dai Er Ke Za Zhi. 2011;13(10):814–6.
CAS
PubMed
Google Scholar
Simons FE, Frew AJ, Ansotegui IJ, Bochner BS, Golden DB, Finkelman FD, et al. Risk assessment in anaphylaxis: current and future approaches. J Allergy Clin Immunol. 2007;120(1 Suppl):S2–24. doi:10.1016/j.jaci.2007.05.001.
Article
CAS
PubMed
Google Scholar
Fanning LB, Boyce JA. Lipid mediators and allergic diseases. Ann Allergy Asthma Immunol. 2013;111(3):155–62. doi:10.1016/j.anai.2013.06.031.
Article
PubMed Central
CAS
PubMed
Google Scholar
Boyce JA. Eicosanoid mediators of mast cells: receptors, regulation of synthesis, and pathobiologic implications. Chem Immunol Allergy. 2005;87:59–79. doi:10.1159/000087571.
Article
CAS
PubMed
Google Scholar
Morrow JD, Guzzo C, Lazarus G, Oates JA, Roberts 2nd LJ. Improved diagnosis of mastocytosis by measurement of the major urinary metabolite of prostaglandin D2. J Invest Dermatol. 1995;104(6):937–40.
Article
CAS
PubMed
Google Scholar
Ravi A, Butterfield J, Weiler CR. Mast cell activation syndrome: improved identification by combined determinations of serum tryptase and 24-hour urine 11beta-prostaglandin2alpha. J Allergy Clin Immunol Pract. 2014;2(6):775–8. doi:10.1016/j.jaip.2014.06.011.
Article
PubMed
Google Scholar
Murphy RC, Hammarstrom S, Samuelsson B. Leukotriene C: a slow-reacting substance from murine mastocytoma cells. Proc Natl Acad Sci U S A. 1979;76(9):4275–9.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kanaoka Y, Boyce JA. Cysteinyl leukotrienes and their receptors; emerging concepts. Allergy Asthma Immunol Res. 2014;6(4):288–95. doi:10.4168/aair.2014.6.4.288.
Article
PubMed Central
CAS
PubMed
Google Scholar
Butterfield JH. Increased leukotriene E4 excretion in systemic mastocytosis. Prostaglandins Other Lipid Mediat. 2010;92(1–4):73–6. doi:10.1016/j.prostaglandins.2010.03.003.
Article
CAS
PubMed
Google Scholar
Valent P, Cerny-Reiterer S, Herrmann H, Mirkina I, George TI, Sotlar K, et al. Phenotypic heterogeneity, novel diagnostic markers, and target expression profiles in normal and neoplastic human mast cells. Best Pract Res Clin Haematol. 2010;23(3):369–78. doi:10.1016/j.beha.2010.07.003.
Article
CAS
PubMed
Google Scholar
Pols MS, Klumperman J. Trafficking and function of the tetraspanin CD63. Exp Cell Res. 2009;315(9):1584–92. doi:10.1016/j.yexcr.2008.09.020.
Article
CAS
PubMed
Google Scholar
He SH, Zhang HY, Zeng XN, Chen D, Yang PC. Mast cells and basophils are essential for allergies: mechanisms of allergic inflammation and a proposed procedure for diagnosis. Acta Pharmacol Sin. 2013;34(10):1270–83. doi:10.1038/aps.2013.88.
Article
PubMed Central
CAS
PubMed
Google Scholar
Sturm EM, Kranzelbinder B, Heinemann A, Groselj-Strele A, Aberer W, Sturm GJ. CD203c-based basophil activation test in allergy diagnosis: characteristics and differences to CD63 upregulation. Cytometry B Clin Cytom. 2010;78(5):308–18. doi:10.1002/cyto.b.20526.
Article
PubMed
CAS
Google Scholar
Kraft S, Fleming T, Billingsley JM, Lin SY, Jouvin MH, Storz P, et al. Anti-CD63 antibodies suppress IgE-dependent allergic reactions in vitro and in vivo. J Exp Med. 2005;201(3):385–96. doi:10.1084/jem.20042085.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kraft S, Jouvin MH, Kulkarni N, Kissing S, Morgan ES, Dvorak AM, et al. The tetraspanin CD63 is required for efficient IgE-mediated mast cell degranulation and anaphylaxis. J Immunol. 2013;191(6):2871–8. doi:10.4049/jimmunol.1202323.
Article
PubMed Central
CAS
PubMed
Google Scholar
Buhring HJ, Streble A, Valent P. The basophil-specific ectoenzyme E-NPP3 (CD203c) as a marker for cell activation and allergy diagnosis. Int Arch Allergy Immunol. 2004;133(4):317–29. doi:10.1159/000077351.
Article
PubMed
CAS
Google Scholar
Yano Y, Hayashi Y, Sano K, Shinmaru H, Kuroda Y, Yokozaki H, et al. Expression and localization of ecto-nucleotide pyrophosphatase/phosphodiesterase I-3 (E-NPP3/CD203c/PD-I beta/B10/gp130RB13-6) in human colon carcinoma. Int J Mol Med. 2003;12(5):763–6.
CAS
PubMed
Google Scholar
Hauswirth AW, Escribano L, Prados A, Nunez R, Mirkina I, Kneidinger M, et al. CD203c is overexpressed on neoplastic mast cells in systemic mastocytosis and is upregulated upon IgE receptor cross-linking. Int J Immunopathol Pharmacol. 2008;21(4):797–806.
CAS
PubMed
Google Scholar
Ono E, Taniguchi M, Higashi N, Mita H, Kajiwara K, Yamaguchi H, et al. CD203c expression on human basophils is associated with asthma exacerbation. J Allergy Clin Immunol. 2010;125(2):483–9. doi:10.1016/j.jaci.2009.10.074. e3.
Article
CAS
PubMed
Google Scholar
Perini GF, Pro B. Brentuximab Vedotin in CD30+ Lymphomas. Biol Ther. 2013;3:15–23. doi:10.1007/s13554-013-0008-7.
Article
PubMed Central
PubMed
Google Scholar
Morgado JM, Perbellini O, Johnson RC, Teodosio C, Matito A, Alvarez-Twose I, et al. CD30 expression by bone marrow mast cells from different diagnostic variants of systemic mastocytosis. Histopathology. 2013;63(6):780–7. doi:10.1111/his.12221.
Article
PubMed
Google Scholar
Malek TR. The biology of interleukin-2. Annu Rev Immunol. 2008;26:453–79. doi:10.1146/annurev.immunol.26.021607.090357.
Article
CAS
PubMed
Google Scholar
Schernthaner GH, Hauswirth AW, Baghestanian M, Agis H, Ghannadan M, Worda C, et al. Detection of differentiation- and activation-linked cell surface antigens on cultured mast cell progenitors. Allergy. 2005;60(10):1248–55. doi:10.1111/j.1398-9995.2005.00865.x.
Article
CAS
PubMed
Google Scholar
Pawankar R, Okuda M, Yssel H, Okumura K, Ra C. Nasal mast cells in perennial allergic rhinitics exhibit increased expression of the Fc epsilonRI, CD40L, IL-4, and IL-13, and can induce IgE synthesis in B cells. J Clin Invest. 1997;99(7):1492–9. doi:10.1172/JCI119311.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kobayashi H, Okayama Y, Ishizuka T, Pawankar R, Ra C, Mori M. Production of IL-13 by human lung mast cells in response to Fcepsilon receptor cross-linkage. Clin Exp Allergy. 1998;28(10):1219–27.
Article
CAS
PubMed
Google Scholar
Yamaguchi M, Lantz CS, Oettgen HC, Katona IM, Fleming T, Miyajima I, et al. IgE enhances mouse mast cell Fc(epsilon)RI expression in vitro and in vivo: evidence for a novel amplification mechanism in IgE-dependent reactions. J Exp Med. 1997;185(4):663–72.
Article
PubMed Central
CAS
PubMed
Google Scholar
Pawankar R, Ra C. IgE-Fc epsilonRI-mast cell axis in the allergic cycle. Clin Exp Allergy. 1998;28 Suppl 3:6–14.
CAS
PubMed
Google Scholar
Rajakulasingam K, Till S, Ying S, Humbert M, Barkans J, Sullivan M, et al. Increased expression of high affinity IgE (FcepsilonRI) receptor-alpha chain mRNA and protein-bearing eosinophils in human allergen-induced atopic asthma. Am J Respir Crit Care Med. 1998;158(1):233–40. doi:10.1164/ajrccm.158.1.9708106.
Article
CAS
PubMed
Google Scholar
Humbert M, Grant JA, Taborda-Barata L, Durham SR, Pfister R, Menz G, et al. High-affinity IgE receptor (FcepsilonRI)-bearing cells in bronchial biopsies from atopic and nonatopic asthma. Am J Respir Crit Care Med. 1996;153(6 Pt 1):1931–7. doi:10.1164/ajrccm.153.6.8665058.
Article
CAS
PubMed
Google Scholar
Andersson CK, Tufvesson E, Aronsson D, Bergqvist A, Mori M, Bjermer L, et al. Alveolar mast cells shift to an FcepsilonRI-expressing phenotype in mild atopic asthma: a novel feature in allergic asthma pathology. Allergy. 2011;66(12):1590–7. doi:10.1111/j.1398-9995.2011.02723.x.
Article
CAS
PubMed
Google Scholar
Andersson CK, Mori M, Bjermer L, Lofdahl CG, Erjefalt JS. Novel site-specific mast cell subpopulations in the human lung. Thorax. 2009;64(4):297–305. doi:10.1136/thx.2008.101683.
Article
CAS
PubMed
Google Scholar
Bergqvist A, Andersson CK, Mori M, Walls AF, Bjermer L, Erjefalt JS. Alveolar T-helper type-2 immunity in atopic asthma is associated with poor clinical control. Clin Sci (Lond). 2015;128(1):47–56. doi:10.1042/CS20140309.
Article
CAS
Google Scholar
Kiyokawa H, Matsumoto H, Nakaji H, Niimi A, Ito I, Ono K, et al. Centrilobular opacities in the asthmatic lung successfully treated with inhaled ciclesonide and tiotropium: with assessment of alveolar nitric oxide levels. Allergol Int. 2011;60(3):381–5. doi:10.2332/allergolint.10-CR-0251.
Article
CAS
PubMed
Google Scholar
Arock M, Schneider E, Boissan M, Tricottet V, Dy M. Differentiation of human basophils: an overview of recent advances and pending questions. J Leukoc Biol. 2002;71(4):557–64.
CAS
PubMed
Google Scholar
Naclerio RM, Baroody FM, Kagey-Sobotka A, Lichtenstein LM. Basophils and eosinophils in allergic rhinitis. J Allergy Clin Immunol. 1994;94(6 Pt 2):1303–9.
Article
CAS
PubMed
Google Scholar
Uyttebroek AP, Sabato V, Faber MA, Cop N, Bridts CH, Lapeere H, et al. Basophil activation tests: time for a reconsideration. Expert Rev Clin Immunol. 2014;10(10):1325–35. doi:10.1586/1744666X.2014.959498.
Article
CAS
PubMed
Google Scholar
Ebo DG, Bridts CH, Mertens CH, Hagendorens MM, Stevens WJ, De Clerck LS. Analyzing histamine release by flow cytometry (HistaFlow): a novel instrument to study the degranulation patterns of basophils. J Immunol Methods. 2012;375(1–2):30–8. doi:10.1016/j.jim.2011.09.003.
Article
CAS
PubMed
Google Scholar
Shamji MH, Layhadi JA, Scadding GW, Cheung DK, Calderon MA, Turka LA, et al. Basophil expression of diamine oxidase: a novel biomarker of allergen immunotherapy response. J Allergy Clin Immunol. 2015;135(4):913–21. doi:10.1016/j.jaci.2014.09.049. e9.
Article
CAS
PubMed
Google Scholar
Schleimer RP, Davidson DA, Peters SP, Lichtenstein LM. Inhibition of human basophil leukotriene release by antiinflammatory steroids. Int Arch Allergy Appl Immunol. 1985;77(1–2):241–3.
Article
CAS
PubMed
Google Scholar
Schroeder JT. Basophils: emerging roles in the pathogenesis of allergic disease. Immunol Rev. 2011;242(1):144–60. doi:10.1111/j.1600-065X.2011.01023.x.
Article
CAS
PubMed
Google Scholar
Austen KF, Maekawa A, Kanaoka Y, Boyce JA. The leukotriene E4 puzzle: finding the missing pieces and revealing the pathobiologic implications. J Allergy Clin Immunol. 2009;124(3):406–14. doi:10.1016/j.jaci.2009.05.046. quiz 15–6.
Article
PubMed Central
CAS
PubMed
Google Scholar
Schroeder JT, Kagey-Sobotka A. Assay methods for measurement of mediators and markers of allergic inflammation. In: Rose NR, Hamilton RG, Detrick B, editors. Manual of clinical laboratory immunology. 6th ed. Washington: ASM Press; 2002. p. 899–909.
Google Scholar
Karasuyama H, Yamanishi Y. Basophils have emerged as a key player in immunity. Curr Opin Immunol. 2014;31:1–7. doi:10.1016/j.coi.2014.07.004.
Article
CAS
PubMed
Google Scholar
Plager DA, Weiss EA, Kephart GM, Mocharla RM, Matsumoto R, Checkel JL, et al. Identification of basophils by a mAb directed against pro-major basic protein 1. J Allergy Clin Immunol. 2006;117(3):626–34. doi:10.1016/j.jaci.2005.10.023.
Article
CAS
PubMed
Google Scholar
Kepley CL, McFeeley PJ, Oliver JM, Lipscomb MF. Immunohistochemical detection of human basophils in postmortem cases of fatal asthma. Am J Respir Crit Care Med. 2001;164(6):1053–8. doi:10.1164/ajrccm.164.6.2102025.
Article
CAS
PubMed
Google Scholar
Foster B, Schwartz LB, Devouassoux G, Metcalfe DD, Prussin C. Characterization of mast-cell tryptase-expressing peripheral blood cells as basophils. J Allergy Clin Immunol. 2002;109(2):287–93.
Article
CAS
PubMed
Google Scholar
Cromheecke JL, Nguyen KT, Huston DP. Emerging role of human basophil biology in health and disease. Curr Allergy Asthma Rep. 2014;14(1):408. doi:10.1007/s11882-013-0408-2.
Article
PubMed Central
PubMed
CAS
Google Scholar
Sturm GJ, Kranzelbinder B, Sturm EM, Heinemann A, Groselj-Strele A, Aberer W. The basophil activation test in the diagnosis of allergy: technical issues and critical factors. Allergy. 2009;64(9):1319–26. doi:10.1111/j.1398-9995.2009.02004.x.
Article
CAS
PubMed
Google Scholar
McGowan EC, Saini S. Update on the performance and application of basophil activation tests. Curr Allergy Asthma Rep. 2013;13(1):101–9. doi:10.1007/s11882-012-0324-x.
Article
PubMed Central
CAS
PubMed
Google Scholar
Boumiza R, Debard AL, Monneret G. The basophil activation test by flow cytometry: recent developments in clinical studies, standardization and emerging perspectives. Clin Mol Allergy. 2005;3:9. doi:10.1186/1476-7961-3-9.
Article
PubMed Central
PubMed
CAS
Google Scholar
Hauswirth AW, Sonneck K, Florian S, Krauth MT, Bohm A, Sperr WR, et al. Interleukin-3 promotes the expression of E-NPP3/CD203C on human blood basophils in healthy subjects and in patients with birch pollen allergy. Int J Immunopathol Pharmacol. 2007;20(2):267–78.
CAS
PubMed
Google Scholar
Hennersdorf F, Florian S, Jakob A, Baumgartner K, Sonneck K, Nordheim A, et al. Identification of CD13, CD107a, and CD164 as novel basophil-activation markers and dissection of two response patterns in time kinetics of IgE-dependent upregulation. Cell Res. 2005;15(5):325–35. doi:10.1038/sj.cr.7290301.
Article
CAS
PubMed
Google Scholar
MacGlashan Jr D. Expression of CD203c and CD63 in human basophils: relationship to differential regulation of piecemeal and anaphylactic degranulation processes. Clin Exp Allergy. 2010;40(9):1365–77. doi:10.1111/j.1365-2222.2010.03572.x.
Article
PubMed Central
CAS
PubMed
Google Scholar
McEuen AR, Calafat J, Compton SJ, Easom NJ, Buckley MG, Knol EF, et al. Mass, charge, and subcellular localization of a unique secretory product identified by the basophil-specific antibody BB1. J Allergy Clin Immunol. 2001;107(5):842–8. doi:10.1067/mai.2001.114650.
Article
CAS
PubMed
Google Scholar
Mochizuki A, McEuen AR, Buckley MG, Walls AF. The release of basogranulin in response to IgE-dependent and IgE-independent stimuli: validity of basogranulin measurement as an indicator of basophil activation. J Allergy Clin Immunol. 2003;112(1):102–8.
Article
CAS
PubMed
Google Scholar
Agis H, Krauth MT, Bohm A, Mosberger I, Mullauer L, Simonitsch-Klupp I, et al. Identification of basogranulin (BB1) as a novel immunohistochemical marker of basophils in normal bone marrow and patients with myeloproliferative disorders. Am J Clin Pathol. 2006;125(2):273–81. doi:10.1309/M9FQ-MQGF-6616-7N2X.
Article
CAS
PubMed
Google Scholar
Nguyen T, Gernez Y, Fuentebella J, Patel A, Tirouvanziam R, Reshamwala N, et al. Immunophenotyping of peripheral eosinophils demonstrates activation in eosinophilic esophagitis. J Pediatr Gastroenterol Nutr. 2011;53(1):40–7. doi:10.1097/MPG.0b013e318212647a.
Article
PubMed Central
PubMed
Google Scholar
Heinisch IV, Bizer C, Volgger W, Simon HU. Functional CD137 receptors are expressed by eosinophils from patients with IgE-mediated allergic responses but not by eosinophils from patients with non-IgE-mediated eosinophilic disorders. J Allergy Clin Immunol. 2001;108(1):21–8. doi:10.1067/mai.2001.116864.
Article
CAS
PubMed
Google Scholar