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Abstract

Upper airway diseases including allergic rhinitis, chronic rhinosinusitis with or without polyps, and cystic fibrosis are
characterized by substantially different inflammatory profiles. Traditionally, studies on the association of specific
bacterial patterns with inflammatory profiles of diseases had been dependent on bacterial culturing. In the past

30 years, molecular biology methods have allowed bacterial culture free studies of microbial communities, revealing
microbiota much more diverse than previously recognized including those found in the upper airway.

At presence, the study of the pathophysiology of upper airway diseases is necessary to establish the relationship between
the microbiome and inflammatory patterns to find their clinical reflections and also their possible causal relationships.
Such investigations may elucidate the path to therapeutic approaches in correcting an imbalanced microbiome.

In the review we summarized techniques used and the current knowledge on the microbiome of upper airway diseases,
the limitations and pitfalls, and identified areas of interest for further research.

Introduction

It is generally believed that exposure to microorganism
compromises health. Reduced exposure to microbiota re-
sults in decrease of incidence of infectious diseases but
may adversely increase the incidence of allergic disorders
[1-3]. Recent developments of culture-independent tools
make it possible to identify microbial species not previ-
ously detected by conventional methods. Unbeknownst to
us, man had been living with these microoraganisms since
the dawn of time.

The human body harbors from 10 to 100 trillion mi-
crobes which greatly outnumber our own human cells [4].
This bacterial assemblage has been coined, “the human
microbiota” [4]. Subsequently, a project called “Human
Microbiome” was established to investigate the flora in
healthy volunteers and their relationship to human health
and disease [5]. The study of the host-microbe relation-
ship has shown that microbes play a major role in our
well-being [4,6]. Alterations of microbial composition
have been linked to several human diseases [4]. There is
also evidence showing that, in the respiratory system,
composition of airway microbiota varies between healthy
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people and people with diseases such as asthma [6-8] and
cystic fibrosis (CF) [8,9]. Unfortunately, with limited stu-
dies currently available, it cannot be concluded with the
same degree for chronic rhinosinusitis (CRS) [10].

Research on microbiome in CRS is therefore needed
to elucidate pathophysiology of this disease such as; 1)
the relationship between the microbiome and inflamma-
tory patterns, 2) possible causal relationships between
microbe and CRS, 3) investigation of the microbiome re-
garding possible therapeutic properties. Dysregulation of
the interactions between the immune system and com-
mensal bacteria is a contributing factor to the develop-
ment and chronicity of a number of inflammatory diseases
[11]. Microorganisms in the gut may play a significant role
in regulating T helper cells (Th cells), regulatory T cells
(Tregs) and dendritic cells as well as Toll-like receptor ex-
pression in sentinel cell (macrophage and dendritic cells)
which are relevant to airway illnesses such as asthma and
allergic diseases [10].

Techniques in microbiota study

Principal approaches to analyze human microbiota are:
culture-dependent and culture-independent techniques.
Culture-dependent methods involve isolation and culturing
of microorganisms prior to their identification accord-
ing to morphological, biochemical or genetic characteris-
tics. These methods are time-consuming, due to culture
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and bias, as certain media and growth conditions favor the
growth of some bacteria over others [12]. In addition, this
approach may not provide a true reflection of the diversity
of microbes in a sample. A “no growth” result does not
necessarily imply that a sample is sterile. It is estimated
that up to 99% of microorganisms observable in nature
typically cannot be cultured by standard techniques [13].
Un-cultivability is a widespread condition that includes:
(i) organisms for which the specific growth requirements
(nutritional, temperature, aeration, etc.) are not fulfilled;
(ii) slow-growing organisms are out-competed in the pres-
ence of fast-growing microorganisms and (iii) disfavored
organisms, which cannot stand the stressful conditions
imposed by cultivation [13,14]. This approach camou-
flages the true bacterial community. There needed to be a
better approach to analyze these microorganisms.

Since the 1980s, the application of molecular detection
methods has allowed culture-independent investigations
of the microbial communities [15]. Molecular techniques
have proven effective in characterizing complex micro-
bial assemblages in environmental samples [16]. How-
ever, an important usefulness of molecular techniques is
the ability to detect genetic materials of non-viable mi-
croorganisms [17,18]. Culture-independent methods are
based on the direct analysis of bacterial DNA (or RNA)
without culturing. Due to the sensitivity of these tech-
niques, special care and attention is required for proce-
dures that include sample collection and handling, DNA
extraction, amplification of gene fragments, distinction
of different fragments, identification of microorganism
and analysis of the microbial community [15].

For bacterial identification, the predominant gene tar-
get for amplification has been the 16S ribosomal RNA
gene (or 16S rRNA) [19,20], which is a component of
the 30S small subunit of prokaryotic ribosomes [21]. It
has been widely targeted because of (i) its presence in al-
most all bacteria, often existing as a multigene family, or
as operon; (ii) the conservation of the 16S rRNA gene,
suggesting that random sequence changes are a measure
of time (evolution) rather than a reflection of different
bacteria; and (iii) the size of 16S rRNA genes (1,500 bp)
being large enough for informatic purposes [22]. More-
over, there are several available reference sequences and
taxonomies databases such as Greengenes, SILVA and
the Ribosomal database project [23]. However, amplifica-
tion of target genes using polymerase chain reaction
(PCR) has made it impossible to completely avoid PCR-
based biases and chimera production. It thus may distort
the level of diversity and bacterial composition in a sample
because of the amplification of pseudogenes [24]. There-
fore, other technologies are often used as complementary
approaches to 16S rRNA gene sequencing for reducing
distortion of bacterial diversity and composition. They
are DNA microarray, fluorescence in situ hybridization
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(FISH), and quantitative PCR (qPCR), and are based on
oligonucleotide probes and primers that target the riboso-
mal RNA sequences or other genes in different hybridi-
zation procedures. Thus these techniques require a prior
knowledge of the microbial DNA sequence. A DNA mi-
croarray (also commonly known as DNA chip or biochip)
is a collection of microscopic DNA spots (oligonucleotide
probes) attached to a solid surface. It is usually used for
gene expression analysis or screening of single nucleotide
polymorphisms. The FISH technique uses fluorescent
probes that bind to only those parts of the chromosome
with which they show a high degree of sequence com-
plementarity. It detects and localizes the presence of
specific DNA sequences on chromosomes. qPCR or
real-time PCR follows the general principle of PCR with
the advantage of detecting the amount of initial DNA
in samples using either fluorescent DNA-binding dyes
or fluorescence-tagged oligonucleotide probes [15].

The introduction of next generation sequencing chan-
ged the history of genomic research as it increased se-
quencing throughput, and did not require prior cloning
steps [25]. These technologies are not only changing our
genome sequencing approaches and the associated time-
lines and costs [26], but also developing many excit-
ing fields such as metagenomics, metatranscriptomics
and single-cell genomics [15]. Three platforms for high
throughput parallel DNA sequencing are in reasonably
widespread use at present: the Roche/454 FLX, the Illumina
(MiSeq, HiSeq, and NextSeq), and the Ion Torrent.

At presence, researchers have a large choice in formu-
lating methodological strategies: depending on the access
to the technology, budget, and objectives of research. Each
culture-independent methodology has its own limitations
and biases, investigators must take additional measures;
for example one may use more than one molecular tech-
nique or a culture-dependent approach in parallel to
provide additional validation of results and reduce the
possibility of false findings due to methodological errors
and biases. Although the culture-independent techniques
have the ability to detect more microbes than culture
technique, the culture-dependent methods so far remain a
better means of obtaining individual isolates contributing
and obtaining isolates for further assays.

Microbiota in allergic rhinitis

As the gate into our body, the respiratory tract itself
harbors a heterogeneous microbiota that decreases in
biomass from upper to lower tract [27]. Even in health,
recent findings indicated that direct exposure to bacter-
ial communities in the airways may provide an explan-
ation for how commensal bacteria can regulate chronic
airway inflammation [11]. Since the observation that in-
fections within households in early childhood have a role
in preventing allergic rhinitis [3], numerous epidemiologic
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and experimental studies have sought to clarify and extend
the so-called hygiene hypothesis with respect to asthma
and other allergic and autoimmune disorders. The evi-
dence supporting the hygiene hypothesis established the
“microbiota (microflora) hypothesis”. This concept pro-
poses that perturbations in gastrointestinal bacteria have
disrupted the mechanisms of mucosal immunologic toler-
ance, which has led to an increase in the incidence of al-
lergic airway disease [28]. Independent studies found that
a reduced diversity of the gut microbiota in infancy is as-
sociated with an increased risk of allergic manifestation at
school age [29-31]. The association between the compos-
ition of microbiota in the intestine, asthma and allergic
disease is nowadays of high interest [32,33], although the
exact mechanism of the interaction of intestinal-systemic
immunity is still not defined [34,35]. There are several
publications reviewing the relationships between intestinal
microbes and asthma [7,10,36]. Suggesting that the intes-
tinal microbiome contributes to the regulation of local
and systemic inflammatory responses via short-chain fatty
acids, a product of fermentation of dietary fibers by intes-
tinal bacteria [11]. Following this model, it is likely that
the respiratory microbiota may also have an impact on air-
way inflammation in allergic responses [1,11], however,
this needs further investigation.

Microorganisms in the airways of cystic fibrosis patients
Cystic fibrosis (CF) is an autosomal recessive genetic
disorder that affects among other organs the lungs and
sinuses. It is characterized by abnormal transport of
chloride and sodium across the epithelium, leading to
thick, viscous secretions. This leads to defective mucocili-
ary clearance and chronic airway infection with a complex
microbiota [37]. Lung disease in cystic fibrosis results
from chronic airway infection and inflammation leading
to progressive bronchiectasis and respiratory failure [38].
Specimens for molecular microbial analysis in CF have for
the most part all derived from sputum [37,39-42], while
swabs from the middle meatus in patients with sinusitis
were not used until now. Thus, no conclusions can be
made for the upper airways yet. Samples consisted of
serial collections of more than six patients in most of
the studies [37,42-44].

Previous studies indicated that exacerbations might be
associated with changes in microbial densities and the
acquisition of new microbial species [37]. Bacterial patho-
gens, including Pseudomonas aeruginosa, Staphylococcus
aureus, and Burkholderia cepacia are known contribu-
tors to such exacerbations. Recent studies using the latest
culture-dependent techniques and culture-independent
molecular techniques have broadened our view of CF
airway bacterial communities [38]. Each CF patient pre-
sented a unique microbiome [40]. The species present
tended to vary more “between” than “within” subjects,
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suggesting that each CF airway infection is unique, with
relatively stable and resilient bacterial communities [44].
The diversity and species richness of fungal and bacterial
communities were significantly lower in patients with de-
creased lung function and poor clinical status [39]. The
authors observed a strong positive correlation between
low species richness and poor lung function [37]. These
findings show the critical relationship between airway bac-
terial community structure, disease stage, and clinical state
at the time of sample collection [42].

The main microorganisms found in CF airways are the
genera Haemophilus, Pseudomonas, Staphylococcus and
Stenotrophomonas. Less common are gram-negatives,
Streptococcus and Mycobacterium spp [45]. Most bac-
teria of CF airways are difficult to culture using conven-
tional clinical methods; therefore, molecular approaches
may confirm or reveal novel bacteria that might be related
to the pathogenesis of cystic fibrosis. Examples of interest
are the Streptococcus milleri group (Streptococcus angino-
sus, Streptococcus intermedius, Streptococcus constellatus)
[46], Pseudomonas intermedia [46], and Gemella species
[47] (Table 1). Further experiments suggested that these
bacteria could act as co-pathogens or enhance the viru-
lence of conventional CF pathogens [48].

The microbiome in chronic rhinosinusitis

Specimen collection is one of the most important steps
in the analysis of remote areas such as the sinuses. An
appropriate collection of the samples is the first step to
perform a meaningful, high quality analysis. It must not
be biased by interference from the nares. Specimen can
be tissue, nasal secretions [55] or material sampled by a
swab. The use of an endoscope for the sampling during
sinus surgery is advisable [17,18,56], although simple
swabs are often used [57] in both healthy and diseased
patients [18]. Samples can be collected from various ana-
tomical locations in the nose such as the inferior turbinate
[55], the middle-meatus [56], the ethmoidal sinuses, the
sphenoid [18], and the anterior nasal cavity [58]. Mucosal
surfaces of the lateral, central, and medial portions of the
maxillary sinus are also collected from locations in the
nose [17]. The use of middle-meatus swabs for DNA-
based bacterial assays is appropriate for the detection of
multiple bacterial species, including anaerobes, which may
be undetected when swabs are used solely for culture.
Based on available cultivation-based studies, the micro-
biology of the middle meatus correlates well with patho-
genic organism of CRS, whereas swabs of the nares would
not be appropriate as a replacement of middle meatus
swabs in investigations of CRS pathogen [59]. Swabs
should not be contaminated by the microorganism of the
nares during insertion/retraction from the middle meatus
or sinuses [56]. To avoid contamination by the nasal
vestibule, researchers often use appropriate protective



Table 1 Summary of cystic fibrosis microbiota studies; type of sample, technique used and genus identified

Author Year n Sample Techinque Achromobacter Actinomyces Atopobium Bacteroidetes Burkholderia
Salipante SJ * 2013 60 CF Sputum 16 s rRNA pyrosequencing
Zemanick ET 2013 37 CF Sputum Conventional culture 16S rRNA X X
pyrosequencing
Delhaes L 2012 8 CF Sputum Conventional culture 165 rRNA
pyrosequencing
Fodor AA 2012 23 CF Sputum 16S rRNA pyrosequencing X
Stressmann FA ** 2012 14 CF Sputum Conventional culture analysis T-RFLP
Zhao J 2012 6 CF Sputum 16 s rRNA pyrosequencing
Guss AM 2011 4 CF Sputum 16 s rRNA pyrosequencing X X
Sibley CD 20Mm 6 CF Sputum Conventional culture T-RFLP 16S rRNA  x X X X
pyrosequencing
Cox MJx** 2010 63 CF Sputum Throat swab Microarray
J Harris JK **** 2007 28 CF 14 healthy  Bronchoalveolar lavage fluid ~ DGGE/TGGE
Rogers GB ***** 2004 34 CF Sputum T-RFLP
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Table 1 Summary of cystic fibrosis microbiota studies; type of sample, technique used and genus identified (Continued)

Author

Campylobacter

Capnocytophaga

Craurococcus

Fusobacterium

Granulicatella

Haemophilus

Lactobacillus

Leptotrichia

Ochrobactrum

Salipante SJ *
Zemanick ET
Delhaes L

Fodor AA
Stressmann FA **
Zhao J

Guss AM

Sibley CD

Cox MJ***

J Harris JK ****

Rogers GB *****

X
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Table 1 Summary of cystic fibrosis microbiota studies; type of sample, technique used and genus identified (Continued)

Author Peptostreptococcus  Porphyromonas  Prevotella Pseudomonas Rhizobium  Rothia  Staphylococcus  Stenotrophomonas  Streptococcus  Veillonella  Ref.
Salipante SJ * X X X [49]
Zemanick ET X X X X X [35]
Delhaes L X X X X X [39]
Fodor AA X X X X 371
Stressmann FA ** X X X [44]
Zhao J X X X X [41]
Guss AM X X X X [50]
Sibley CD X X X X X [51]
Cox MJ*** X (52]
J Harris JK **** X X [53]
Rogers GB ***** X X X X X [54]

*Stenotrophomonas maltophilia, Streptococcus agalactiae, Haemophilus influenzae, Pseudomonas aeruginosa.
**P.aeruginosa, Stenotrophomonas maltophili, Staphylococcus aureus, Streptococcus Group F.

***S. aureus, P. aeruginosa.
***xS. aureus, S. maltophilia, P. aeruginosa, Streptococcus mitis, H. influenza.
***%%p_geruginosa, Porphyromonas endodontalis, P. gingivalis, Prevotella denticola, P. melaninogenica, P. nigrescens, P. veroralis, P. intermedia, P. loescheii, P. salivae, P. buccae, P. oris, Craurococcus roseus, Rhizobium loti,
Ochrobactrum anthropi, Peptostreptococcus anaerobius.

Asterisks indicate studies in which mentioned species were identified.
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devices such as a sterilized Killian nasal speculum with
long leaves [58].

Before the era of culture-independent methods, con-
ventional cultures have implicated Staphylococcus aureus
and coagulase-negative Staphylococcus as principal pa-
thogens in chronic rhinosinusitis (CRS) [60]. The deve-
lopment of culture-independent molecular techniques
allowed the detection of more bacteria [60] and revealed
greater biodiversity than conventional culture [56].
Thus, the etiology of CRS may be polymicrobial [55]
and the role of anaerobe bacteria may be more promin-
ent than presumed; however, it is likely that the bacteria
detected by culture-dependent techniques still are of
clinical relevance [60].

Using comparative microbiome profiling in a cohort of
a small number of not further defined CRS patients and
healthy subjects, it was proposed that the sinus micro-
biota of CRS patients exhibit significantly reduced bac-
terial diversity compared to those of healthy controls.
Abreu et al, found a depletion of multiple phylogenet-
ically distinct lactic acid bacteria coincident with an in-
crease in the relative abundance of a single species,
Corynebacterium tuberculostearicum [17]. These mi-
crobe caused goblet cell hyperplasia and mucin hyper-
secretion in a murine model of sinus infection. In this
model, Lactobacillus sakei represented a potentially
protective species [17]. However, the finding of this single
species has not been confirmed by others [55,56] (see
Table 2). In a larger study, Staphylococcus aureus and Pro-
pionibacterium acnes were the most common organisms
in CRS (mostly CRSWNP) and controls, respectively [18].
Recently, the investigators detected Staphylococcus aureus,
Staphylococcus epidermidis and Propionibacterium acnes
as the most prevalent and abundant microorganisms in
healthy sinuses [61].

Using culture-independent (qPCR and 16S rRNA gene
sequencing) methodologies for pathogen identification
in chronic rhinosinusitis patients, among 57,407 pyrose-
quences were generated. The most prevalent ones were
from coagulase-negative staphylococci (100%), 21/21 spe-
cimens, Corynebacterium spp (not specifically Coryne-
bacterium tuberculostearicum) (85.7%) 18/21, P. acnes
(76.2%), 16/21, and Staphylococcus aureus (66.7%) 14/21.
Although these authors found significantly different distri-
butions of 16S rRNA sequences recovered from CRS vs.
non-CRS cases, neither richness nor evenness indices
showed statistically significant differences [56]. In another
approach using 16S rRNA gene clone sequencing in a ter-
minal restriction fragment length polymorphism (T-RFLP)
analysis, the bacteria present in 70 clinical samples from
43 CRS patients undergoing endoscopic sinus surgery
were characterized; a total of 48 separate bands were de-
tected. Species belonging to 34 genera were identified
as present by clone sequence analysis. Of the species
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detected, those within the genera Pseudomonas, Citrobac-
ter, Haemophilus, Propionibacterium, Staphylococcus, and
Streptococcus were found numerically dominant, with
Pseudomonas aeruginosa being the most frequently de-
tected species [55]. Another prospective study collected
mucosal biopsies from 18 patients undergoing endoscopic
sinus surgery for CRS and 9 control patients with healthy
sinuses (indication: pituitary adenomas) compared swab
culture with bTEFAP (bacterial tag-encoded FLX ampli-
con pyrosequencing). Standard cultures mainly showed
Staphylococcus aureus and Coagulase-negative Staphylo-
coccus aureus, whereas the molecular analysis identified
up to 20 predominant organisms per sample. Staphylo-
coccus aureus was nevertheless detected in about 50%;
moreover, they disclosed anaerobic species with so far
unknown impact in CRS, Diaphorobacter and Peptoni-
philus. Interestingly, Diaphorobacter is described as a
strong biofilm creator [55,60].

Table 2 provides a summary of previous studies related
to the microbiome in chronic rhinosinusitis, including
sample size, type of sample, technique used and genus
found.

Comparisons of molecular analyses suggest that the
detection of microorganisms by Fluorescence in-situ hy-
bridization (FISH) and culture-dependent techniques is
related to the abundance of an organism, furthermore,
cultivation tends to give advantage to rapidly growing
bacteria [18]. The investigators employed conventional
cultivation, molecular diagnostics and FISH to detect
Staphylococcus aureus as a standard. They found that
FISH analysis had a sensitivity of 78% with a specificity
of 93% compared to the molecular technique [18]. Evi-
dence from high-sensitivity techniques demonstrates that
the healthy sinus is clearly not sterile [18], but shows high
diversity of the resident microbiota [17]. The nasal micro-
biota of healthy subjects mainly consist of members of the
phylum Actinobacteria (e.g., Propionibacterium spp. and
Corynebacterium spp.), whereas the phyla Firmicutes (e.g.,
Staphylococcus spp.) and Proteobacteria (e.g. Enterobacter
spp) are less frequent [55,56,60,63]. It appears that the
prevalence and abundance of organisms is critical in de-
termining healthy conditions [18].

Thus, similar to CF, findings in CRS have pointed out
that the microbiome is unique for each individual patient
[42-44] and the community of microbes is diversified [10].
As a general principle, a decreasing bacterial diversity
is correlated with disease severity in CF [37-39,42,44],
whereas CRS patients were characterized by an altered
microbial composition and greater abundance of Staphy-
lococcus aureus [56]. There was no single common mi-
crobiota profile among patients with similar clinical
conditions in the studies performed so far, although
Staphylococcus aureus was prominent in most studies
[10,11,68]. Thus, there is a clear need for larger series



Table 2 Summary of chronic rhinosinusitis microbiota studies; type of sample, technique used and genus identified

Author Year n Sample Techinque Aureobacterium  Alicycliphilus  Burkholderia
Ramakrishnan VR et al.* 2013 28 healthy Middle meatus swab gPCR 16S rRNA pyrosequencing
Aurora R et al. 2013 30 CRS 12 healthy Superior middle meatus lavage 16S rRNA pyrosequencing X
Boase S et al** 2013 38 CRS 6 healthy Mucus Middle meatus swab Conventional culture Ibis T5000
Abreu NA et al. 2012 10 CRS 10 healthy Brush samples of mucosal surfaces  PhyloChip analysis X
of the lateral, central, and medial
portions of the maxillary sinus
Feazel LM et al** 2012 15 CRS 5 healthy Middle meatus swabs Conventional culture 16S rRNA
pyrosequences
Stressmann FA et al.*** 2011 43 CRS. Polyp and inferior turbinate tissue. 16S rRNA pyrosequencing T-RFLP
Mucin (if present)
Frank DN et al.**** 2010 26 S. aureus carriers  Nostril swabs 16S rRNA pyrosequencing
16 non-carriers 5
healthy
Stephenson MF et al ***** 2010 18 CRS 9 healthy Mucosal Biopsy 16 s rRNA pyrosequencing
Healy DY et al ****** 2008 11 CRS 3 healthy Mucosa samples FISH DNA probes Haemophilus influenzae
Streptococcus pneumophilia Staphylococcus
aureus Pseudomonas aeruginosa
Sanderson AR et al ******* 2006 18 CRS 5 healthy Biopsies of the sinus mucosa FISH DNA probes Haemophilus influenzae
Streptococcus pneumophilia Staphylococcus
aureus Pseudomonas aeruginosa
Lina G et alx**xxxxx 2003 216 healthy Nasal vestibule swabs Conventional culture
Rasmussen TT et al********x 25000 10 healthy Nasal washes Conventional culture Capillary sequencing  x
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Table 2 Summary of chronic rhinosinusitis microbiota studies; type of sample, technique used and genus identified (Continued)

Author

Carnobacterium  Citrobacter  Cloacibacterium

Corynebacterium  Curtobacterium  Cyanobacterium  Diaphorobacter

Enterobacter

Ramakrishnan VR et al.*
Aurora R et al.

Boase S et al**

Abreu NA et al.

Feazel LM et al**
Stressmann FA et al ***
Frank DN et al****
Stephenson MF et al *¥****
Healy DY et al******
Sanderson AR et al******x
Lina G et alx*xxxxxx

Rasmussen TT et a ¥**xxxxxx

X

X X X

X
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Table 2 Summary of chronic rhinosinusitis microbiota studies; type of sample, technique used and genus identified (Continued)

Author Fusobacterium Haemophilus Helicobacter Lachnospira Lactobacillus Micrococcus Moraxella Mycobacterium Neisseria

Ramakrishnan VR et al.* X X X X
Aurora R et al.

Boase S et al**

Abreu NA et al. X X X X

Feazel LM et al**

Stressmann FA et al *** X

Frank DN et al.****

Stephenson MF et al *****

Healy DY et al****** X
Sanderson AR et al ******* X
Lina G et gl xxxxxxxx X

Rasmussen TT et a ***xxxxxx
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Table 2 Summary of chronic rhinosinusitis microbiota studies; type of sample, technique used and genus identified (Continued)

Author Pediococcus Peptoniphilus Propionibacterium Pseudomonas Rhodococcus Staphylococcus Stenotrophomonas Streptococcus Ref.
Ramakrishnan VR et al* X X X X [61]
Aurora R et al. [62]
Boase S et al.** X X [18]
Abreu NA et al. X X (171
Feazel LM et al.** X X [56]
Stressmann FA et al *** X X X X [55]
Frank DN et al.**** X X [63]
Stephenson MF et al ***** X X [60]
Healy DY et al****** X X X [64]
Sanderson AR et gl ¥**¥*** X X X [65]
Lina G et al xxxxex X X [66]
Rasmussen TT et g ##xx#xxxx X X [67]

*S. aureus, P. acnes.
**P_ geruginosa.

**¥S. aureus, S. epidermidis, Propionibacterium acnes.

***%S._aureus, S. coagulase-negative, S. anaerobic species.

*****H. influenza, Streptococcus pneumophilia, S. aureus, P. aeruginosa.
**x*x¥x¥xStaphylococcus aureus, S. non-aureus, S. epidermidis, S. capitis, S. haemolyticus, S. warneri, S. hominis, S. lugdunensis, S. cohnii subsp. cohnii, S. auricularis.
*xxxxx¢tHagemophilus influenza, S. pneumoniae, S. aureus, Pseudomona aeruginosa.
*xxxxx%%Staphylococcus epidermis. S. capitis, S. hominis. S. haemolyticus, S. lugdunensis, S. warneri.
Asterisks indicate studies in which mentioned species were identified.
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of well-defined patients sampled and investigated in an
optimal way, also avoiding the interference of recently
applied antibiotics, to establish the correlation between
microbe and CRS disease.

Limitations of the current studies

Airway microbiome studies revealed several critical fac-
tors, which also may impact CRS studies. First of all, the
inclusion of well-defined patients, using pheno- and po-
tentially endotypes of upper airway disease [68-71], and
matched controls in meaningful numbers is necessary to
draw supportable conclusions. Furthermore, recent anti-
biotic treatment within 1 month [44] prior to collection
could significantly reduce the diversity of the micro-
biome in samples [42,43,56], and contamination by bac-
teria from other organs such as the skin should be
taken into account [9,27]. Factors which may perturb
the collection or evaluation procedures are contaminat-
ing host DNA [40] or RNA, the existence of viruses
such as bacteriophages in the samples, which may im-
pact on the number and genes of microbes [72], and tech-
nical issues such as extraction methods (e.g. modified
lysostaphin-lysozyme method to enhance staphylococ-
cus DNA extraction) [41].

Currently, most of the publications in human micro-
biome studies have spotlighted sequencing of 16S rRNA
in the identification of bacteria. Their results may mis-
judge the level of diversity and microbial composition
by amplification of chimera and pseudogenes and/or
inappropriate primer selection. Metagenomic shotgun
sequencing may avoid these problems by omitting amp-
lification and allows to detect gene contents of complex
microbiota and to compare functional gene contents
between samples, but still may have limitations as dis-
cussed above and in low-microbial burden samples.
However, researchers are now increasingly employing
novel techniques to study the human microbiome [25].

Conclusion and perspective of nasal microbiome studies

The new molecular techniques enhance our chance to
identify new bacteria within the nose and nasal cavities;
as the pivotal host functions evolved under high micro-
bial pressure, they will show a very complex network of
microbes and thus microbe-host interactions [41]. On
the host side, specific pheno- and endotypes of CRS have
been described characterized by an imbalance of Thl
and Th2 function [71]. In CRSWNP patients, Staphylo-
coccus aureus has been identified to unfold impact on
the mucosal immune functions [10,68,70]. The relation-
ship between the microbiome and mucosal immunity
may be bidirectional, with pressure coming from the
bacteria and inadequate defense from the host [70]. Re-
search on how specific bacteria impact on the immune
response of nasal and sinus mucosa may shed new light
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on the pathophysiology of CRS and may result in new
strategies for its treatment.

The manipulation of microbiota or the introduction of
specifically healthy microbiota may prove to be useful
for the treatment of inflammatory disease [73]. Staphylo-
coccus aureus and Pseudomonas aeruginosa are principal
offenders in the development of persistent severe airway
disease in CRS and CF patients. As bacterial resistance
complicates the efficacy of antibiotics, the use of probiotic
bacteria as colonizers and antimicrobial agents that may
inhibit the growth of pathogenic bacteria awaits further
development.
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