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Mechanisms of allergen-specific immunotherapy
and immune tolerance to allergens
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Abstract

Substantial progress in understanding mechanisms of immune regulation in allergy, asthma, autoimmune diseases,
tumors, organ transplantation and chronic infections has led to a variety of targeted therapeutic approaches.
Allergen-specific immunotherapy (AIT) has been used for 100 years as a desensitizing therapy for allergic diseases
and represents the potentially curative and specific way of treatment. The mechanisms by which allergen-AIT has
its mechanisms of action include the very early desensitization effects, modulation of T- and B-cell responses and
related antibody isotypes as well as inhibition of migration of eosinophils, basophils and mast cells to tissues and
release of their mediators. Regulatory T cells (Treg) have been identified as key regulators of immunological processes
in peripheral tolerance to allergens. Skewing of allergen-specific effector T cells to a regulatory phenotype appears as a
key event in the development of healthy immune response to allergens and successful outcome in AIT. Naturally
occurring FoxP3+ CD4+CD25+ Treg cells and inducible type 1 Treg (Tr1) cells contribute to the control of allergen-
specific immune responses in several major ways, which can be summarized as suppression of dendritic cells that
support the generation of effector T cells; suppression of effector Th1, Th2 and Th17 cells; suppression of allergen-
specific IgE, and induction of IgG4; suppression of mast cells, basophils and eosinophils and suppression of effector T
cell migration to tissues. New strategies for immune intervention will likely include targeting of the molecular
mechanisms of allergen tolerance and reciprocal regulation of effector and regulatory T cell subsets.
Introduction
The immune system forms an interactive network with
tissues and makes it’s decisions on the basis of signals
coming from resident tissue cells, infectious agents, com-
mensal bacteria and almost any environmental agents.
Our research during the last years has focused on different
aspects for the development of novel concepts on how the
immune system tolerates allergens, and how allergic dis-
eases should be redefined accordingly [1-29]. In recent
years, induction of immune tolerance has become a prime
target for prevention and treatment strategies for many
diseases in which dysregulation of the immune system
plays an important role [30]. Currently, allergen-specific
immunotherapy (AIT) is mainly applied subcutaneously
or sublingually and is suitable for both children and adults
for pollen, pet dander, house dust mite, and venom aller-
gies [31-34]. It not only affects rhinoconjunctival symp-
toms but also has documented short- and long-term
benefits in asthma treatment. The disease modification
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effects of AIT leads to decreased disease severity, less drug
usage, prevention of future allergen sensitizations, and a
long-term curative effect. Increasing safety while main-
taining or even augmenting efficiency is the main goal of
research for novel vaccine development and improvement
of treatment schemes in AIT [32-34].
Immune tolerance to allergens can be defined as estab-

lishment of a long-term clinical tolerance against allergens,
which immunologically implies changes in memory type
allergen-specific T and B cell responses as well as mast
cells and basophil activation thresholds that do not cause
allergic symptoms anymore [35-39]. In addition, preven-
tion of new allergen sensitizations [40] and progression to
more severe disease, such as development of asthma [41]
after allergic rhinitis or development of systemic anaphyl-
axis are main clinical implications of immune tolerance
[42-46]. Many different ways of treatments are being pur-
sued to improve efficacy, decrease side effects, decrease
long course of treatment and increase patient compliance
[47-51]. Currently pursued novel approaches are epicuta-
neous AIT and combination of peptides of grass pollen al-
lergens with hepatitis B virus Pre S protein and peptide
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immunotherapy with short and long T cell epitope petides
and intralymphatic immunotherapy [52-55]. Studies to
provide prophylactic usage are also being performed [56].
Many efforts are being performed for the improvement
and standardization of conventional subcutaneous and
sublingual AITs as well as oral immunotherapy of food al-
lergy from patient selection, to vaccine applications and
treatment schedules [57-63].
The immunologic basis of allergic diseases is observed

in two phases: sensitization and development of memory
T and B cell responses and IgE (early phase), and effector
functions related to tissue inflammation and injury (late
phase) [37]. The differentiation and clonal expansion of
allergen-specific CD4+ Th2 cells producing IL-4 and IL-13
are essential to induce class switching to the ε immuno-
globulin heavy chain in B cells and the production of
allergen-specific IgE antibodies during the sensitization
phase. Allergen-specific IgE binds to the high-affinity
FcεRI on the surface of mast cells and basophils, thus
leading to the patient’s sensitization [64]. When a new en-
counter with the allergen causes cross-linking of the IgE-
FcεRI complexes on sensitized basophils and mast cells,
they are activated and subsequently release of anaphylac-
togenic mediators responsible for the classical symptoms
of the immediate phase (type 1 hypersensitivity).
Depending on the innate immune response activating

capacity of the substances co-exposed with the antigen,
co-signals for cell differentiation and status of the cells
and cytokines in the microenvironment, CD4+ naive T
cells can differentiate into Th1, Th2, Th9, Th17 or Th22
type memory and effector cells. Based on their respective
cytokine profiles, responses to chemokines and interac-
tions with other cells, these T-cell subsets can promote
different types of inflammatory responses. During the
development of allergic disease, effector Th2 cells pro-
duce IL-4, IL-5, IL-9, IL-13 [35-37,65,66] and probably
other recently identified cytokines such as IL-25, IL-31,
IL-33 mainly secreted from epithelial cells and dendritic
cells contribute to Th2 responses [67-73]. These cyto-
kines play a role in the production of allergen-specific
IgE, eosinophilia, permissiveness of endothelium for the
recruitment of inflammatory cells to inflamed tissues,
production of mucus and decreased threshold of con-
traction of smooth muscles [74]. The commonly ob-
served Th2 profile in atopic diseases might be a result of
a) increased differentiation and clonal expansion of Th2
cells [75] or b) increased tendency to activation-induced
cell death of high IFN-γ-producing Th1 cells [76]. Th1
cells also efficiently contribute to the effector phase in
allergic diseases with their role in apoptosis of the epi-
thelium in asthma and atopic dermatitis [77-79], and
apoptosis of smooth muscle cells in fatal asthma [80].
The discovery of the Th17 cells is filling an essential

gap in our understanding of inflammatory processes.
Th17 cells are characterized by IL-17A, IL-17 F, IL-6, IL-8,
TNF-α, IL-22 and IL-26 expression [81-87]. Neutralization
of IL-17 and Th17-related functions resolves tissue path-
ology in autoimmunity models, reduces joint destruction
in experimental arthritis and reduces neutrophil infiltra-
tion in an experimental asthma model, while increasing
eosinophil infiltration [88-91]. It was shown in two recent
studies that TGF-β in the presence of IL-4 reprograms
Th2 cell differentiation and leads to the development of
a new population of Th9 cells that produce IL-9 and
IL-10 [92,93].
T cell subset known as Th22 cells has been demon-

strated in T cells that independently express IL-22 with
low expression levels of IL-17 and play a role in atopic
dermatitis [94]. All these T subsets and related events
represent targets in the treatment of allergic diseases
and the induction of Treg cells and allergen tolerance
can balance their over activation.
The pivotal role of Treg cells in inducing and main-

taining immune tolerance has been demonstrated during
the last 15 years, where their adoptive transfer was
shown to prevent or cure several T-cell mediated disease
models, including asthmatic lung inflammation, auto-
immune diseases and allograft rejection [95]. In the clin-
ical setting, both injection and sublingual versions of
AIT have been shown to induce allergen-specific Treg
cells in humans. In addition to Treg cells, several other
factors appear to play a mechanistic role in AIT. It is
now essential to identify biomarkers and predict the re-
sponse to AIT. Novel understanding of disease endo-
types will help to further develop this concept [96].
Novel developments in molecular biology such as micro-
RNAs may provide novel targets [97]. miRNAs function
together with partner proteins and mainly cause gene si-
lencing through degradation of target mRNAs or in-
hibition of translation. A particular miRNA can have
hundreds of target genes including interleukins and their
co expressed pro or anti-inflammatory genes, and
thereby influence the expression of a large proportion of
proteins [97-100].

Molecular and cellular events in AIT and their underlying
mechanisms
Very early mast cell and basophil suppression-related
desensitization effect
Although decreases in IgE antibody levels and IgE-
mediated skin sensitivity normally requires years of AIT,
most patients are protected against bee stings or tolerate
skin late phase response challenges at early stages of re-
spective venom or grass pollen SITs [101,102]. An im-
portant observation starting from the first injection is an
early decrease in mast cell and basophil activity for de-
granulation and systemic anaphylaxis (Figure 1). There
is surprisingly little information about the mechanisms



Figure 1 Immunologic changes during the course of AIT. Starting with the first injection, decreases in mast cell and basophil activity,
degranulation and tendency for systemic anaphylaxis degranulation takes place within the first hours. This is followed by generation of allergen-specific
Treg and Breg cells and suppression of allergen-specific Th1 and Th2 cells. Specific IgE shows an early increase and decreases relatively late. These
events are in parallel to increases of IgG4 that continuously increases as long as the treatment continues. After several months, the allergen-specific
IgE/IgG4 ratio decreases. After a few months, decreases in tissue mast cells and eosinophils and release of their mediators and skin late phase response
occurs. A significant decrease in type I skin test reactivity is also observed relatively late in the course. It has to be noted that there is significant variation
between donors and protocols.
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by which AIT modifies and/or suppresses immune re-
sponses of basophils and mast cells, in particular during
repetitive administration of increasing doses of allergens
within the first hours. Although it seems similar to rapid
desensitization for hypersensitivity reactions to drugs, the
mechanism of this desensitization effect for AIT is yet un-
known. Acute oral desensitization in mice demonstrated
that antigen-specific mast cell desensitization is one of the
main underlying mechanisms for oral desensitization
[103]. It has been shown that mediators of anaphylaxis
(histamine and leukotrienes) are released during AIT and
sting challenges without inducing a systemic anaphylactic
response [104]. Their piecemeal release below the thresh-
old of systemic anaphylaxis may decrease the granule
content of mediators and also may affect the threshold of
activation of mast cells and basophils, because decreased
mediator release in these cells is a well demonstrated fea-
ture a short time after the start of AIT [104-106]. One of
the main soluble factors liberated by effector cells follow-
ing allergen challenge is histamine, which mediates its ef-
fects via histamine receptors (HRs). So far, four different
human HR-types have been identified as H1-4 [107]. Both
the expression pattern of HRs and modifications in the in-
tensity of the expression of a single HR type are decisive
for the nature of the developing immune response
[108,109]. H1R has significant proinflammatory and cell
activating properties, while H2R has been shown to be
coupled to adenylate cyclase and phosphoinositide second
messenger systems and is supposed to be involved primar-
ily in tolerogenic immune responses [110]. Although there
are individual differences and risks for developing systemic
anaphylaxis during the course of AIT, the suppression of
mast cells and basophils continues to be affected by
changes in other immune parameters such as the gener-
ation of allergen-specific Treg cells and decreased specific
IgE. In a recent study, significantly enhanced tryptophan
degradation and elevated human Ig receptors inhibitory
transcript (ILT4) expression in monocytes were found
within a few hours after the first injection on day 1 repre-
senting markers of very early changes [111]. In addition,
early improvement in basophil sensitivity predicts symp-
tom relief with grass pollen immunotherapy [112]. Fur-
thermore, basophil expression of diamine oxidase shows a
significant increase after AIT and suggested as a novel bio-
marker of allergen immunotherapy response [113].

Very early effects related to antigen-presenting cells and
adjuvants
Aluminium hydroxide is a commonly used adjuvant in
AIT vaccines. While generally proven to be efficacious and
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having a good safety profile, novel adjuvants are needed to
overcome current problems in conventional immunother-
apy. For example depending on the type of toll-like recep-
tor (TLR), different types of antigen-presenting cells can
be targeted. TLR-triggering compounds that can control
the overexpression of Th2 cytokines or skew the Th1-Th2
balance towards a Th1 and Treg profile have been effective
in murine models of allergy [114].
The epidermis contains high numbers of potent antigen-

presenting Langerhans cells. Accordingly, transcutaneous
or epicutaneous AIT was recently introduced as a treat-
ment option for allergies [115]. A few applications of aller-
gens using skin patches with treatment duration of a few
weeks were sufficient to achieve lasting relief. Similarly
oral mucosal Langerhans cells bind allergens after resorb-
tion, which significantly increased their migratory capacity
but attenuated their maturation [116]. Allergen chal-
lenge promoted the release of TGF-beta1 and IL-10 by
oral mucosal Langerhans cells themselves as well as by
cocultured T cells.
The tolerogenic function of different types of DC de-

pends on certain maturation stages and subsets of different
ontogenies and can be influenced by immunomodulatory
agents. A role for DC in the induction of different subsets
of Treg cells in defined microenvironments has been
supported by several studies. In intestinal lamina propria,
several subsets of DC reside and are in close contact
with commensal bacteria and food antigens/allergens
[117,118]. DC from the lamina propria of the small intes-
tine and from the mesenteric lymph node are noticeably
better than splenic DC at inducing the expression of
Foxp3 in naive T cells in the presence of exogenous TGF-β
[117,118]. Treg cells can be induced in the microenviron-
ment of tumors and chronic infections due to DC that
promote them. In some cases, DC conditioned by Foxp3+

Treg cells; pathogen-derived molecules such as, filament-
ous hemagglutinin [119]; exogenous signals such as hista-
mine via its receptor 2 [110], adenosine [120], Vitamin D3
metabolites [121] or retinoic acid [122] can induce new
populations of Treg cells. Antigen presentation by partially
mature airway DC that express IL-10 induce the formation
of Tr1-like cells, which inhibit subsequent inflammatory
responses [123]. In addition, depletion and adoptively
transfer of pulmonary plasmocytoid DC has demonstrated
an important role for these cells in protection from aller-
gen sensitization and asthma development in mice [124].
Virus-like particles as a novel, modular, acellular

antigen-presenting system and as strong adjuvants are
able to modulate the responses of allergen-specific T
cells. Displaying Fel d1 on virus-like particles prevents
type I hypersensitivity despite greatly enhanced im-
munogenicity and represents a novel therapy for cat
allergy. A single vaccination was sufficient to induce
protection in mice [125,126].
Innate lymphoid cells are a recently introduced cell
subset that may play a role in enhancing inflammation
in many diseases. Particularly Type 2 innate lymphoid
cells play a role in asthma and upper respiratory inflam-
mation [127]. Type 2 immunity consists of GATA-3+
ILC2s, TC2 cells, and Th2 cells producing IL-4, IL-5,
and IL-13, which induce mast cell, basophil, and eosino-
phil activation, as well as IgE antibody production, thus
protecting against helminthes and venoms [128]. Seasonal
increases in peripheral innate lymphoid type 2 cells
are inhibited by subcutaneous grass pollen immuno-
therapy [129].

Treg cells and peripheral T cell tolerance to allergens
The induction of a tolerant state in peripheral T cells
represents an essential step in AIT (Figure 2). Peripheral
T cell tolerance is characterized mainly by generation of
allergen-specific Treg cells [130-132] and decrease in
Th2 and Th1 cells [133]. It is initiated by IL-10 and
TGF-β, which are increasingly produced by the antigen-
specific Treg cells [130-132,134]. Subsets of Treg cells
with distinct phenotypes and mechanisms of action in-
clude the naturally occurring, thymic selected CD4+

CD25+ Treg cells, and the inducible type 1 Treg cells
(Tr1) (Figure 1) [135]. Different studies show roles for
both subsets suggesting an overlap in particularly the in-
ducible subsets of Treg cells in humans. Their first effect
is realized by suppression of allergen-specific Th2 and
Th1 cells. The suppression by these cells could partially
be blocked by the use of neutralizing antibodies against
secreted or membrane-bound IL-10 and TGF-β. In co-
herence with this, it has been shown that CD4+CD25+

Treg cells from atopic donors have a reduced capability
to suppress the proliferation of CD4+CD25− T cells
[136]. The presence of local Foxp3+CD25+CD3+ cells in
the nasal mucosa, their increased numbers after immuno-
therapy, and their association with clinical efficacy and
suppression of seasonal allergic inflammation strengthen
the concept of allergen tolerance based on Treg cells in
humans [137]. These findings were coined by tracking
specific T cells with allergen class-II tetramers: clinical tol-
erance induction in humans is associated with a marked
loss of IL-4-producing T-cells and the acquisition of IL-
10-producing and FOXP3-positive antigen-specific CD4+

T-cells [138]. In addition to conventional immunotherapy,
peptide immunotherapy in allergic asthma generates IL-
10-dependent immunological tolerance associated with
linked epitope suppression. Treatment with selected epi-
topes from a single allergen resulted in suppression of re-
sponses to other (“linked”) epitopes within the same
molecule [139]. Treg cells and suppression of allergen-
specific immune response in the course of AIT has been
shown in many different AITs [140]. Similar findings of in-
duction of IL-10 and Treg cells have been observed in



Figure 2 Role of Treg and Breg cells in the suppression of allergic inflammation. The balance between Th2 cells and Treg cells is decisive
for the development or suppression of allergic inflammation. Treg cells and their cytokines suppress Th2 type immune responses and contribute
to the control of allergic diseases in several major ways. Red arrows indicate the regulatory and suppressive effects of Treg cells, which exert their
regulatory functions directly or indirectly on B cells by inducing IgG4 and IgA and suppressing IgE; on vascular endothelium by suppressing Th2
cell homing to tissues; on mast cells, basophils and eosinophils via direct and indirect suppressive effects; and on directly and indirectly
suppression of epithelial cell activation and proinflammatory properties. In addition, B reg cells also suppress effector T cells and contribute to
IgG4 synthesis.
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mouse models of AIT only when prolonged schedules are
used [141].
IL-10-producing antigen-presenting cells, such as B cells

[142] and dendritic cells [123] as well as clonally expanded
IL-10-producing allergen-specific Tr1 cells [131,143] all
contribute to the suppressive effects of IL-10 in different
models. IL-10 suppresses T cells by blocking CD2, CD28
and inducible co-stimulator (ICOS) co-stimulatory signals
in a rapid signal transduction cascade [144]. In the pres-
ence of IL-10, a direct inhibition on CD2, CD28 and ICOS
signaling in T cells occurs via utilization of Src-homology-
2 domain containing tyrosine phosphatase (SHP-1) by IL-
10 [144,145]. SHP-1 rapidly binds to CD28 and ICOS and
dephosphorylates them [144]. Supporting these findings,
spleen cells from SHP-1-deficient mice show increased
proliferation with CD2, CD28 and ICOS stimulation in
comparison to wild-type mice, which was not sup-
pressed by IL-10. Generation of dominant negative
SHP-1-overexpressing T cells or silencing of the SHP-1
gene by small inhibitory RNA (siRNA) both altered SHP-1
functions and abolished the suppressive effect of IL-10
[144-146]. Interestingly, the suppressive effect of IL-10
was not observed in other IL-10 family cytokines IL-19,
IL-20, IL-22, IL-24 [147]. In addition to T cells, IL-10 also
exerts inhibitory effect on activated monocytes and mac-
rophages [148]. It has been shown in monocytes and DC
that IL-10 suppresses co-stimulatory molecules and down
regulates MHC class-II molecules and APC capacity
[149]. Furthermore, IL-10 induces the expression of the
suppressor of the cytokine-signalling-3 (SOCS3) gene that
might play a role in the inhibition of the IFN-γ-induced
tyrosine phosphorylation of Stat1 [150].
TGF-β is essential for the maintenance of immuno-

logical self-tolerance [151]. TGF-β induces the conversion
of naive CD4+CD25− T cells into CD4+CD25+ T cells by
the induction of FoxP3 [152], and TGF-β signaling is re-
quired for in vivo expansion and immunosuppressive cap-
acity of CD4+CD25+ T cells [153]. In addition, RUNX1
and RUNX3 transcription factors play an essential role in
FOXP3 development both in humans and mice [154].
However, the exact suppressive mechanisms behind TGF-
β activation of Smad pathways remain to be elucidated.
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Treg and Breg cells in healthy immune response to
allergens in high dose exposed individuals
Two high dose allergen exposure models have been
studied in humans. These are immune response to bee
venom allergens in bee keepers and immune response to
cat allergens in cat owners [135,155]. If a detectable im-
mune response is mounted, Tr1 cells specific for com-
mon environmental allergens consistently represent the
dominant subset in healthy individuals. They use mul-
tiple suppressive mechanisms, IL-10 and TGF-β as se-
creted cytokines, and cytotoxic T lymphocyte antigen 4
and programmed death 1 as surface molecules. Healthy
and allergic individuals exhibit all three, i.e. Th1, Th2,
Tr1 type allergen-specific subsets in different propor-
tions [143]. Accordingly, a change in the dominant sub-
set and the balance between Th2 and Treg cells may
lead to either allergy development or recovery.
It was found in allergic children that Treg cells increase

during pollen season [156]. Whether these CD4+CD25high

T cells directly contribute to inflammation or their in-
creased levels keep the inflammation at low levels remains
as an important research question. Circulating allergen-
specific CD4+CD25highFoxp3+ T-regulatory cells do not
show a major difference between nonatopic and atopic in-
dividuals [157]. However, it was demonstrated that FOXP3
expression shows a negative correlation with IgE, eosino-
philia and IFN-γ levels and FOXP3+/CD4+ ratio is signifi-
cantly low in asthma and atopic dermatitis [158]. CD4+

CD25+ Treg cells have been associated with the spon-
taneous remission of Cow’s milk allergy. Children who
outgrew their allergy (tolerant children) had higher
frequencies of circulating CD4+CD25+ T cells and de-
creased in vitro proliferative responses to bovine beta-
lactoglobulin in peripheral blood mononuclear cells
compared with children who maintained clinically active
allergy [159]. Peripheral tolerance utilizes multiple me-
chanisms to suppress allergic inflammation. Treg cells
contribute to the control of allergen-specific immune re-
sponses by a)Suppression of antigen-presenting cells that
support the generation of effector T cells; b) suppression
of Th2 and Th1 cells; c) suppression of allergen-specific
IgE and induction of IgG4; d) suppression of mast cells,
basophils and eosinophils; e) interaction with resident tis-
sue cells and remodeling [135]. In addition to immune
suppression, decrease in antigen-specific Th2 repertoire
because of central lymphatic organ homing or deletion
my play a role in the mechanisms of allergen tolerance
[160,161]. In some cases and types of immunother-
apies, the suppression of Th2 cells was found to be
transient [162].
Allergen tolerance in healthy individuals can be

broken under certain conditions. In a recent study, hu-
man tonsils were studied that contain allergen-specific T
cells but show very low levels of allergen-induced
T-cell proliferation, thus representing a very suitable
in vivo model to assess mechanisms of breaking allergen-
specific T-cell tolerance [163,164]. It was demonstrated
that triggering of Toll-like receptor (TLR) 4 or TLR8 and
the proinflammatory cytokines IL-1beta or IL-6 break
allergen-specific T-cell tolerance in human tonsils and
peripheral blood through a mechanism dependent on the
adaptor molecule myeloid differentiation primary re-
sponse gene 88. In particular, myeloid DCs and stimula-
tions that activate them broke the tolerance of allergen-
specific CD4 T cells, whereas plasmacytoid DCs and stim-
ulations that activate them, such as TLR7 and TLR9, did
not have any effect. Tolerance-breaking conditions in-
duced by different molecular mechanisms were associated
with a mixed cytokine profile with a tendency toward in-
creased levels of IL-13 and IL-17, which are T2 and T17
cytokines, respectively. These findings suggest that certain
innate immune response signals and proinflammatory cy-
tokines break allergen-specific CD4 T-cell tolerance in
healthy subjects, which might lead to the development or
exacerbation of allergic diseases after encountering mi-
crobes or inflammatory conditions [163]. Viral infections
represent important candidates for breaking of allergen
tolerance, because as a virus infected lymphoid tissue, hu-
man tonsillar cytokine expression is closely related to
existing viral infections and shows distinct clusters be-
tween antiviral and immune regulatory genes [165].
In addition to Treg cells, IL-10-producing regulatory B

cells suppress immune responses, and lack of these cells
leads to exacerbated symptoms in mouse models of
chronic inflammation, transplantation, and chronic infec-
tion [166]. In a recent study human inducible IL-10-
secreting B regulatory 1 (BR1) cells were characterized.
Human IL-10+ BR1 cells expressed high surface CD25 and
CD71 and low CD73 levels. Sorting of CD73-CD25 +
CD71+ B cells allowed enrichment of human BR1 cells,
which produced high levels of IL-10 and potently sup-
pressed antigen-specific CD4+ T-cell proliferation [166].
IgG4 was selectively confined to human BR1 cells. B cells
specific for the major bee venom allergen PLA isolated
from nonallergic beekeepers show increased expression of
IL-10 and IgG4. Furthermore, the frequency of IL-10+
PLA-specific B cells increased in allergic patients receiving
allergen-specific immunotherapy. This study demonstrates
two essential in vivo evidence for allergen tolerance: the
suppressive B cells and IgG4-expressing B cells that are
confined to IL-10+ BR1 cells in human subjects [166]. It
was recently demonstrated that solely IL-10-overexpressing
B cells acquired a prominent immunoregulatory profile
comprising upregulation of suppressor of cytokine signal-
ing 3 (SOCS3), glycoprotein A repetitions predominant
(GARP), the IL-2 receptor alpha chain (CD25), and pro-
grammed cell death 1 ligand 1 (PD-L1) [167]. These cells
showed a significant reduction in levels of proinflammatory
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cytokines (TNF-alpha, IL-8, and macrophage inflammatory
protein 1alpha) and augmented the production of anti-
inflammatory IL-1 receptor antagonist and vascular endo-
thelial growth factor. Furthermore, IL-10-overexpressing B
cells secreted less IgE and potently suppressed proinflam-
matory cytokines in PBMCs, maturation of monocyte-
derived dendritic cells (rendering their profile to regulatory
phenotype), and antigen-specific proliferation [167].
Modulation of allergen-specific IgE and IgG responses during
AIT
Peripheral T cell tolerance is rapidly induced during AIT,
however there is no evidence for B cell tolerance in the
early course [130]. AIT induces a transient increase in
serum specific IgE followed by gradual decrease over
months or years of treatment (Figure 1) [168,169]. In
pollen-sensitive patients, desensitization prevents eleva-
tion of the serum specific IgE during the pollen season
[170]. The changes in IgE levels cannot explain the dimin-
ished responsiveness to specific allergen due to AIT, since
the decrease in serum IgE is relatively late and does not
correlate with clinical improvement after AIT.
Subclasses of IgG antibodies, especially IgG4 is thought

to capture the allergen before reaching the effector cell-
bound IgE, and thus to prevent the activation of mast cells
and basophils. IgG4 antibodies can be viewed as a marker
of introduced allergen dose and they have the ability to
modulate the immune response to allergen. However, the
relationship between the efficacy of AIT and the induction
of allergen-specific IgG subgroups remains a controversial
issue with serum concentrations of allergen-specific IgG
correlating with clinical improvement in some studies, but
not in others [171,172]. Allergen-specific IgG may be di-
rected against the same epitopes as IgE, resulting in direct
competition for allergen binding and a “blocking” effect.
The concept of blocking antibodies has been revaluated.
Analysis of the IgG subtypes induced by AIT has shown
specific increases in IgG1 and particularly IgG4, with
levels increasing 10-100-fold [173,174]. There is accumu-
lating evidence that specific immunotherapy also influ-
ences the blocking activity on IgE-mediated responses by
IgG4. Results suggest that successful specific immunother-
apy is associated with an increase in IgG blocking activity
that is not solely dependent on the quantity of IgG anti-
bodies [175,176]. In a recent study, inhibition by IgG re-
quired Fcγ receptor-IIB. One IgG against a single epitope
on the major allergen was able to block the degranulation
of basophils from individuals with cat allergy. The inhibi-
tory potential of IgG antibodies increased when larger
allergen-IgG complexes were formed. It seems to be rele-
vant rather to measure the blocking activity and or affinity
of allergen-specific IgG or IgG subsets, particularly IgG4
and also IgG1 instead of their levels in sera [177].
There are several features of IgG4, which may play a role
in its non inflammatory role. IgG4 hinge region has
unique structural features that result in a lower affinity for
certain Fcγ receptors and the ability to separate and repair
by dynamic Fab arm exchange leads to bi-specific anti-
bodies that are functionally monomeric [178,179]. Fur-
thermore, IgG4 does not fix complement and is capable of
inhibiting immune-complex formation by other isotypes,
giving this isotype anti-inflammatory characteristics. In a
clinical trial with five recombinant Phleum allergen mix-
ures, all treated subjects developed very strong allergen-
specific IgG4 and also increased IgG1 antibody responses.
Some patients who were not initially sensitized to Phl p 5,
for example, developed strong specific IgG4, but not IgE
antibody responses specifically against that allergen [173].
This demonstrates that extract based antibody measure-
ments may provide a wrong information and studies on
mechanisms of AIT should be performed with single
allergens.
It is highly possible that the decrease in IgE/IgG4 ratio

during AIT is a feature of skew from allergen-specific
Th2 to Treg cell predominance. IL-10 is a potent sup-
pressor of both total and allergen-specific IgE, while it
simultaneously increases IgG4 production [131,180].
Thus, IL-10 not only generates tolerance in T cells; it
also regulates specific isotype formation towards a non-
inflammatory phenotype. The healthy immune response
to Der p 1 is associated with increased specific IgA and
IgG4, small amounts of IgG1 and almost undetectable
IgE antibodies in serum [132]. In the same study house
dust mite-AIT did not significantly change specific IgE
levels after 70 days of treatment; however, a significant
increase in specific IgA, IgG1 and IgG4 was observed
[132]. The reason for the long-time gap between the
change in T cell subsets, but not IgE levels is not easily
explainable by the half-life of this antibody. In this con-
text, the role of bone marrow-residing IgE-producing
plasma cells with very long life-span remain to be inves-
tigated [181].

Conclusion
During the past 20 years, major advances have been made
in understanding the molecular and cellular mechanisms
of allergen tolerance in humans. The demonstration of
allergen-specific T and B cell tolerance, particularly that
mediated by the immune-suppressive functions of IL-10,
led to a major conceptual change in this area [182]. AIT
has multiple mechanisms of action with the involvement
of many cell subsets. These effects comprise very early ef-
fects related to antigen-presenting cells and adjuvants,
desensitization of effector cells, antigen-specific immune
tolerance in T and B cells and regulation of IgE and IgG4
(Figure 1). Similar mechanisms are observed in high dose
allergen tolerance in healthy bee keepers and non allergic
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cat owners. The kinetics and intensity of these events
change according to the type of AIT vaccine that is used
and the place of administration.
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