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Interleukin-13 Signaling and Its Role in Asthma
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Abstract: Asthma affects nearly 300 million people worldwide. The
majority respond to inhaled corticosteroid treatment with or without
beta-adrenergic agonists. However, a subset of 5 to 10% with severe
asthma do not respond optimally to these medications. Different
phenotypes of asthma may explain why current therapies show
limited benefits in subgroups of patients. Interleukin-13 is impli-
cated as a central regulator in IgE synthesis, mucus hypersecretion,
airway hyperresponsiveness, and fibrosis. Promising research sug-
gests that the interleukin-13 pathway may be an important target in
the treatment of the different asthma phenotypes.
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Asthma affects nearly 300 million people and one of every
250 deaths is attributed to this disease worldwide.1 The

cost of asthma hospitalizations, emergency room visits,
lost school, and work days is significant. About 90% of
patients respond to treatment regimens with inhaled corti-
costeroids with or without long-acting �2 agonists; how-
ever, 5 to 10% seemingly do not. Treatment of this
subgroup of patients accounts for greater than 50% of the
total costs related to asthma.2,3

Asthma is a reversible airway disease characterized by
airway hyper-reactivity, inflammation and airway remodel-
ing, and interleukin-13 (IL-13) is a recognized effector in
these processes. For example, in a mouse model of asthma,
IL-13 signaling results in mucin secretion, airway hyper-
reactivity, fibrosis, and chitinase up-regulation.4

Different phenotypes of asthma may explain why cur-
rent therapies show limited benefits in subgroups of patients.5

Patients with severe, poorly controlled asthma, who are
insensitive to glucocorticoid treatment, highlight the need for
new treatments. IL-13 signaling may be one pathway in-
volved in the induction of corticosteroid-insensitive airway
inflammation.6

IL-13 STRUCTURE AND SIGNALING
IL-13 has a mass of 13 kDa and folds into 4 alpha

helical bundles, A, B, C, and D. It shares overlapping sec-
ondary structural features with interleukin-4 (IL-4); however,
it has 25% sequence homology and is capable of IL-4
independent signaling.7,8 IL-13 signals through a shared re-
ceptor with IL-4 via a heterodimer receptor complex com-
prised of IL-4 receptor alpha (IL-4R�) and IL-13 receptor
alpha 1 (IL-13R�1) (also termed the type 2 interleukin 4
receptor). Signaling through this receptor is initiated with
high affinity when IL-13 binds IL-13R�1, leading to subse-
quent heterodimer formation with IL-4R�. Crystal structure
analysis shows the heterodimer receptor complex signals with
different potencies in response to IL-4 versus IL-13. This
suggests that the extracellular cytokine-receptor interactions
modulate intracellular membrane-proximal signaling events.9
Both intracellular subunit receptor tails interact with tyrosine
kinases of the Janus family (JAK 1-3, TYK2).10 IL-4R�
associates with JAK1 whereas IL-13R�1 interacts with either
JAK2 or TYK2, but not JAK3. Once JAK1 is activated, the
IL-4R� tyrosine residues in the cytoplasmic domain are
phosphorylated enabling the transcription factor STAT6 to
dock. Once phosphorylated, 2 STAT6 molecules dimerize
and translocate to the nucleus where the complex affects
transcription of many IL-13 dependent genes.

IL-13 can also bind a high affinity receptor, IL-13
receptor alpha 2 (IL-13R�2). In the mouse, this receptor has
a soluble form and a membrane bound form resulting from
alternative transcriptional splice variants. IL-13R�2 in hu-
mans is primarily an intracellular rather than a membrane-
bound molecule in both primary bronchial epithelial cells and
fibroblasts and displays a diffuse granular cytoplasmic distri-
bution in both cell types.11 It is thought to act as a decoy
receptor because of its short cytoplasmic tail. However,
studies suggest that this receptor mediates IL-13 signaling
and induces TGF-� production in both in vitro human and
mouse and in vivo mouse experiments (Fig. 1).12,13

Extracellular regions of the IL-13R�1 and 2 domains in
mice are composed of 3 fibronectin type III domains D1, D2,
and D3. The D2 and D3 domains have cytokine receptor
homology modules (CRHs), which show similar structure to
the class I cytokine receptor superfamily. Based on mutation
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studies, the IL-13R�1 CRH module locations at leucine 319
and tyrosine 321 are important for binding to IL-13. So too,
the IL-13R�2 CRH module locations at tyrosine 207, aspar-
tate 271, tyrosine 315, and aspartate 318 are important for
binding to IL-13.16

Through DNA mutagenesis studies, it was shown that the
alpha helices in IL-13 A, C, and D participate in interaction with
IL-13R�1 receptors.17,18 Lysine residues 105, 106, and arginine
109 of the D-helix of IL-13 interact with IL-13R�2. Glutamic
acids at position 92 and 110 and leucine at position 104 are
important for IL-13/IL-4 receptor stimulation.18

IL-13 is produced by CD4� T cells, NK T cells, mast
cells, basophils, eosinophils, and nuocytes.17,21 It is impli-
cated as a central regulator in IgE synthesis, mucus hyperse-
cretion, airway hyperresponsiveness (AHR), and fibrosis.4

Through the use of the knockout mouse model, airway
resistance, mucus production, and profibrogenic mediator induc-
tion are nearly totally dependent on IL-13R�1, which serves as

a signaling molecule for both IL-4 and IL-13.4 Allergen-induced
TGF-� is completely dependent on IL-13R�1.

IL-13 ROLE IN MUCUS PRODUCTION
Goblet cell hyperplasia and mucus overproduction are

features of asthma and chronic obstructive pulmonary disease
and can lead to airway plugging, a pathologic feature of fatal
asthma.21–23 Animal models demonstrate that IL-13 induces
goblet cell hyperplasia and mucus hypersecretion.24,25

Human bronchial epithelial cells (HBEs), stimulated by
IL-4 and IL-13, can also undergo changes from a fluid
absorptive state to a hypersecretory state independent of
goblet cell density changes.26,27

Human in vitro studies demonstrate that IL-13 in-
duces goblet cell hyperplasia, increases bronchial epithe-
lial periodic acid schiff (PAS) cell staining, and MUC5AC
expression. Experiments suggest that these effects are

FIGURE 1. IL-13 signaling. Step 1, the binding of IL-13 to IL-13R�1 leads to step 2, heterodimer formation with IL-4R�1 and
formation of the type 2 IL-4 receptor. Step 3 leads to Janus Kinase activation (JAK), followed by step 4, STAT6 phosphoryla-
tion, dimerization, and translocation to the nucleus. In step 5, Stat 6 heterodimers affect IL-13-dependent gene transcription.
IL-13R�2 is an IL-13 dependent gene. IL-13 can bind IL-13R�2 that leads to sequestration of IL-13 or IL-13 signaling by TGF-�
induction or AP-1 signaling. Mouse models suggest that suppressor of cytokine signaling (SOCS)1 is an IL-13 dependent gene
that interacts with JAK2 to negatively regulate JAK2 association with IL-13R�1.14 In a mouse model, SOCS5 targets IL-4R�1
and impairs STAT6 signaling.15
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mediated by IL-13 signaling through IL-13R�1.28,29 In
these experiments, IL-13 also led to an increase in the
soluble form of IL-13R�2. IL-13R�2 decreased the quantity
of PAS� cells, MUC5AC� cells, goblet cells, and decreased
both the mRNA expression and protein secretion of MUC5AC
induced by IL-13.29

Antibody blockade of IL-13R�2, in the presence of IL-13,
on HBEs, led to increased PAS� epithelial cells, goblet cells
and MUC5AC� cells and MUC5AC mRNA expression. This
suggests that the soluble form of IL-13R�2 may negatively
modulate IL-13 signaling.29 IL-4 was also able to increase the
number of PAS� cells, goblet cells and MUC5AC� cells;
however, IL-13R�2 had no effects on the number of PAS�
cells, goblet cells and MUC5AC� cells, MUC5AC mRNA
expression or protein secretion induced by IL-4.29

In human airway epithelial cells, IL-13 is known to
induce 15-Lipoxygenase-1 (15-LO1), an important enzyme in
the arachidonic acid pathway, that forms stable 15-hydroxy-
eicosatetraenoic acid (15-HETE) from metabolism of arachi-
donic acid. Human epithelial 15-LO1 expression is correlated
with asthma severity.30 IL-13 induction of 15-LO1 stimulates
formation of 15-HETE that can be further metabolized
through esterification to phosphatidylethanolamine (15-
HETE-PE). IL-13 induction of 15-HETE-PE enhances
MUC5AC expression in human airway epithelial cells.30

IL-13 ROLE IN ASPIRIN EXACERBATED
RESPIRATORY DISEASE (AERD)

The triad of aspirin sensitivity, asthma, and nasal polyp-
osis has been documented since at least 1922.31 About 10% of
adults with asthma will experience a flare of their asthma

accompanied by naso-ocular reactions after ingestion of aspirin
or nonsteroidal anti-inflammatory drugs (NSAIDS) leading to
intense eosinophilic inflammation of the nasobronchial tissues
and cysteinyl-leukotriene (Cys-LTs) overproduction.33 Poly-
morphisms within the IL-13 gene are associated with increased
eotaxin-1 levels, increased eosinophil count, and the develop-
ment of rhinosinusitis in patients with AERD.33

IL-13 is implicated in regulating key arachidonic acid
metabolic pathways including the prostaglandin pathway, the
leukotriene pathway, and the lipoxin pathway (Fig. 2).

Interestingly, IL-4 increased LTC4 Synthase expres-
sion, a protein important in converting LTA4 to LTC4 that is
most implicated in AERD; whereas IL-13 had no effect on
LTC4 Synthase up-regulation.35 LTC4 increased IL-13R�1
RNA levels via a STAT6 independent pathway.36 IL-13
appeared to have both upstream and downstream effects. In a
mouse model, intranasal IL-13 induced an increase in Cys-LT
receptors 1 and 2 RNA and decreased Cys-LT production at
a dose of 0.035 �g.36 At higher doses, intratracheal IL-13
induced an increase in 5-Lipoxygenase (5-LO) mRNA and
increased BALF Cys-LTs (LTC4, D4, E4) within 15 minutes
and LTB4 within 6 hours in BP2 mice.37

IL-13 inhibits mPGES-1 (prostaglandin E synthase
membrane-bound form) and COX-2 and up-regulates 15-
prostaglandin-dehydrogenase (15-PGDH), the PGE-2 me-
tabolizing enzyme, thereby leading to decreased PGE-2
levels.38 PGE-2 regulates wound closure in airway epithe-
lium, and exogenous application of PGE-2 stimulates
wound closure, a vital process in airway epithelial repair
after injury, maintenance of barrier function and limitation
of airway hyperreactivity.39
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FIGURE 2. Arachidonic acid
metabolic pathways and the role
of IL-13. The prostaglandin path-
way (red), the leukotriene path-
way (blue), and the lipoxin
pathway (green). PGE2 has inhib-
itory effects on leukotriene pro-
duction including inhibition of
5-LO translocation from the cyto-
plasm to the nucleus and abroga-
tion of leukotriene synthesis.24
IL-13 down-regulates PGE2 both
directly and indirectly through
effects on PGES and COX-2. IL-13
also induces 15-LO that is corre-
lated with asthma severity. IL-13
induction of 15-LO stimulates for-
mation of 15-HETE and a metab-
olite of this enhances MUC5AC
expression in human airway epi-
thelial cells.
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Lipoxins are important in inflammation resolution, act-
ing locally at sites of inflammation. Administration of intra-
pleural lipoxin A4 (LXA4) to OVA sensitized rats, decreased
allergen-induced pleural eosinophil and neutrophil infiltra-
tion.40 In vitro treatment of the GM-CSF stimulated eosino-
philic leukemia cell line (EoL-1) cells with LXA4 inhibited
secretion of IL-8, IL-13, and eotaxin suggesting this molecule
may have negative feedback implications on IL-13 mediated
pathways.41

INTERLEUKIN-13 IN PULMONARY FIBROSIS
Fibrosis is a major cause of morbidity and mortality

with limited treatment options. Chronic inflammation in-
duced by allergens, infections, toxins, autoimmune reactions,
radiation, and mechanical injury can result in architectural
lung changes, gas exchange impairment, and fibrosis with
heterogeneous temporal development depending on the trig-
ger. Experimental models identify IL-13 to be an important
profibrotic mediator.25,42–50

Transgenic mouse in vivo studies demonstrate that lung
over-expression of IL-13 induces subepithelial airway fibro-
sis without additional stimulus.25 Antibody blockade of IL-13
in mouse lungs challenged with Aspergillus fumigatus
conidia, to simulate chronic allergic asthma, or bleomycin, to
simulate toxin mediated fibrosis, led to decreased lung col-
lagen deposition.42,43

IL-13 induces CC-chemokines, including CCL3 (MIP-
1�), CCL4 (MIP-1�), CCL20 (MIP-3�), CCL2 (MCP-1),
CCL11(eotaxin), CCL22 (MDC), and CCL6 (C10).43,44 An-
tibodies to CCL3, CCL2, and CCL6 profoundly abrogate
lung remodeling responses in IL-13 transgenic mice and in
bleomycin challenged mice, suggesting the pathogenesis of
fibrosis has nonredundant mechanisms.43,44

Both IL-4 and IL-13 have redundant signaling path-
ways with implications in pulmonary fibrosis. IL-4 and IL-13
are important in alternatively activated macrophage induc-
tion, which is believed to regulate fibrosis.45 The use of
knock-out mice deficient in IL-13R�1 implicates this recep-
tor as the most important fibrosis signaling mechanism in
fibrosis development.46 Furthermore, several experimental
models of fibrosis suggest that IL-13 is the dominant effector
in toxin,47,48 infection,49 allergic,42,50 and posttransplant bron-
chiolitis obliterans51 models of fibrosis.

In addition to the redundancy of IL-4 and IL-13 sig-
naling through IL-4R�/Stat6, IL-13 may signal through a
distinct pathway via the IL-13R�2 driving TGF�1 dependent
pulmonary fibrosis.13 IL-13 induces latent TGF�1 production
in macrophages. TGF�1 forms homodimers that are nonco-
valently bound to a latency-associated protein (LAP) when
stored in an inactive form in cells. IL-13 also indirectly
activates TGF� by up-regulating LAP cleavage proteins.52,53
Additionally, IL-13 activates TGF� through stimulation of
matrix metalloproteinases and cathepsin-based proteolytic
pathways.53,54 In IL-13 transgenic mice, TGF�1 plays a key
role in subepithelial fibrosis evolution.52

IL-13 IN AIRWAY HYPERRESPONSIVENESS
CD4� T lymphocytes are important in the events lead-

ing to AHR in animal asthma models, via an IL-4R, STAT6

mechanism.55,56 This process is independent of IL-4 and IL-5.
Exogenous addition of IL-13 in T lymphocyte-deficient mice
promotes AHR and airway inflammation.57

IL-13 modulates Ca2� responses in vitro in human
airway smooth muscle through a STAT6/JAK-independent
mechanism.58 It signals through MAP kinases ERK and JNK
effecting airway smooth muscle, leading some to hypothesize
that STAT6 dependent pathways may be important in acute
AHR, whereas STAT6-independent AHR and airway remod-
eling mechanisms may be important in chronic models.58–60

Inflammation, remodeling, and AHR, all features of
asthma, are induced by IL-13 overexpression.24,25 Blockade
of IL-13 by the soluble receptor-Fc fusion protein abrogates
allergen-induced AHR.24,56

IL-13 is overexpressed in sputum, bronchial submu-
cosa, peripheral blood, and mast cells in the airway smooth
muscle bundle in asthmatics further supporting its role in the
pathogenesis of AHR.61–64 Human IL-13 mRNA elevation in
bronchial biopsy homogenates is seen in both atopic and
nonatopic asthmatics versus nonasthmatics in RT-PCR ex-
periments.65 In situ hybridization studies of bronchial biopsy
specimens from steroid responsive asthmatics versus steroid
resistant asthmatics treated with one week of prednisolone
demonstrated a decrease in IL-13 mRNA� cells after treat-
ment in the steroid responsive group that correlated with
asthma clinical improvement in contrast to the steroid resis-
tant group that maintained IL-13 mRNA� cells and no
clinical response.66 Sputum IL-13 levels correspond to airway
eosinophil percentage that is associated with airway inflam-
mation in corticosteroid-naive subjects.67 Furthermore, aller-
gen challenged mild asthmatics have up-regulated IL-13
concentrations in bronchoalveolar lavage.68

Sputum IL-13 concentration and the number of IL-13�
cells in the bronchial submucosa and airway smooth muscle
bundle is increased in severe asthmatics.69 Additionally, spu-
tum IL-13 concentration is negatively associated with asthma
control.69 Steroid-responsive asthmatics, treated with oral
steroids for 1 week, demonstrate decreased bronchial biopsy
specimen IL-13 mRNA expression. However, patients clini-
cally steroid nonresponsive, demonstrate persistent IL-13
mRNA expression.65 This observation of persistent IL-13
sputum levels and bronchial biopsy specimen levels was
observed in 2 cohorts of patients treated with intramuscular
triamcinolone, to exclude noncompliance as a confounding
variable.69

IL-13 IN GLUCOCORTICOID
RESISTANT ASTHMA

Glucocorticoids are anti-inflammatory medications of-
ten used as maintenance therapy in acute and chronic asthma;
however, some patients with severe asthma are steroid non-
responsive. IL-13 remains elevated in glucocorticoid (GC)
insensitive asthma, but not GC sensitive asthma.70,71

GCs enter the cell by diffusion across the cell mem-
brane with subsequent binding to the glucocorticoid receptor
(GR), which dimerizes in the cytoplasm. The complex then
translocates to the nucleus by nuclear transport proteins,
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whereby the complex modulates transcription of many genes
pertaining to asthma through both activation and repression.

GCs have been shown to repress IL-13 transcription
indirectly. In vitro experiments demonstrate that fluticasone
can inhibit the IL-13 activating transcription factor GATA-3,
from translocating into the nucleus through competition for
the nuclear translocation protein importin �, in the T lym-
phocyte cell line HuT-78 and in peripheral blood mononu-
clear cells (PBMC).72 Additionally, fluticasone can induce
expression of mitogen-activated protein kinase (MAPK) in-
hibitor phosphatase-1 (MKP-1), an inhibitor of p38 MAPK
which is required for phosphorylation of GATA-3 before
GATA-3 binding to importin � and transport into the cell
nucleus.72

GCs can also repress IL-13 transcription directly within
the nucleus. The GC receptor has 2 isoforms designated GR�
and GR� based on alternative splice sites.73 Both GR� and
GR� repress transcription of IL-13.74 GCs repress IL-13 gene
transcription within the cell nucleus, in part, by competitively
inhibiting activation mediated by NF-AT/AP-1 DNA binding
sites in the proximal promoter.75 GR� mediates repressive
function through the recruitment of histone deacetylase com-
plexes.74 Interestingly, higher numbers of GR� immunore-
active cells in the bronchoalveolar lavage fluid and periph-
eral blood were identified in patients with GC-insensitive
asthma.71 Given that elevated levels of IL-13 are identified in
GC-insensitive asthmatics, GR� inability to down-regulate
IL-13 may be responsible for this finding; however, no
known studies have been performed to answer this question.

GC effects can be regulated at many steps within the cell.
IL-2, IL-4, and IL-13 have all been found to be up-regulated in
patients with steroid-resistant asthma.66,68,76 Upon cell entry,
endogenous GCs can be converted to an active or inactive
form by the enzyme 11�-hydroxysteroid dehydrogenase
(11�-HSD)-1 and 11�-HSD-2, respectively, thereby regulat-
ing the bioavailability of the GC substrate for the GR. IL-13
can up-regulate 11�-HSD-1 and this is thought to act as a
negative feedback loop to curtail inflammation through the
steroid anti-inflammatory effects previously mentioned.77 It is
unknown whether this pathway plays a role in steroid-resis-
tant asthma.

In vitro, GC receptor function and binding affinity for
GCs are theorized to be reduced by GR phosphorylation
events within the cytoplasm. One such kinase thought to be
important in GR phosphorylation is p38 MAPK, which is
activated by IL-13, IL-2, and IL-4, since p38 MAPK inhibitor
abrogates these effects.78

IL-13 IN CHITIN ALLERGIC ASTHMA
Chitin, the second most abundant biopolymer in nature,

consists of N-acetyl-ß-D-glucosamine, and provides struc-
tural rigidity to fungi, crustaceans, helminthes, and insects.79

Many chitin containing organisms have been implicated in
allergy and asthma. Characterization of dust mite and cock-
roach anatomy, demonstrates chitin makes up a large com-
ponent of the exoskeleton. Chitin can be introduced into the
airway by inhalation of exoskeletons of dust mites, cock-

roaches, and by inhalation of fungi like Aspergillus and
Alternaria.

Humans do not synthesize chitin, however, the human
genome encodes for chitinases (enzymes that cleave chitin),
and chitinase-like proteins (proteins that bind but do not
cleave chitin).80 These proteins are hypothesized to counter
parasitic infection.80 The chitinase and chitinase-like proteins
(C/CLP) are referred to as the 18-glycosyl hydrolase family.80

In humans, the chitinase and chitinase-like proteins include
Acid Mammalian Chitinase (AMCase), chitotriosidase, ovi-
ductin, HcGP-39/YKL-40 (chitinase 3-like-1), and YKL-39
(chitinase 3-like-2).80

In the mouse model, chitin challenge can induce accu-
mulation of IL-4 expressing innate immune cells including
eosinophils and basophils to the site of challenge, to the lungs
or intraperitoneally, in a tissue nonspecific manner.81 Mouse
models of bronchial asthma demonstrate that AMCase is
involved in the pathophysiology of asthma. AMCase has
been shown to be induced by a T Helper-2 (TH2)-specific,
IL-13-mediated pathway in epithelial cells and macrophages
after ovalbumin sensitization and aerosol lung challenge in
mice.82 Additionally, AMCase mRNA was highly induced
after A. fumigatus intranasal challenge in mice.83 Inhibition of
AMCase leads to abrogated TH2 inflammation, less bronchial
hyper reactivity, and fewer eosinophils.84

Through a series of experiments with knockout models
of IL-13 signaling, including knockout mice lacking IL-
13R�1 or IL-4R�, Munitz et al, demonstrated that key
pathogenic molecules associated with asthma severity, such
as chitinase, are entirely dependent on IL-13 signaling
through IL-13R�1, a component of the type II receptor.

In human lung autopsies, AMCase is expressed in exag-
gerated quantities in asthmatic lung epithelial cells and macro-
phages versus nonasthmatic lungs.82 Interestingly, Siebold et al,
reports both lower AMCase protein levels in BAL fluid and
lower AMCase protein activity from asthmatic subjects with
mild-to-moderate asthma compared with normal subjects sug-
gesting a protective role of functional AMCase.85

Investigation by a group at Yale, showed that asthma
severity can be correlated with YKL-40 (chitinase 3-like-1)
levels.86 YKL-40 has been shown to be up-regulated by
IL-13.87

IL-13 IN INFECTIOUS ASTHMA
Infections are implicated in asthma flares.5 Rhinovirus

(RV), the virus responsible for the common cold, in children
is a distinct risk factor for asthma exacerbations with an odds
ratio of 6.8.88 A Finnish study compared cytokine responses
in acute and convalescent rhinovirus versus respiratory syn-
cytial virus (RSV) induced early wheezing in hospitalized,
steroid-naive patients aged 3–35 months. Among the cyto-
kines studied, IL-13 was the most increased in the RV group
versus the RSV group with a 39-fold increase in the acute
phase and 33-fold increase in the convalescent phase.89

IL-13 is implicated in innate immune responses inde-
pendent of IgE or T lymphocytes. In vitro, human mast cell
activation with thymic stromal lymphopoietin (TSLP) or
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Toll-Like Receptor (TLR) 2 activated airway epithelial cells,
in addition to IL-1, led to IL-5 and IL-13 production.90 In
mice, bone marrow derived mast cells stimulated with Staph-
ylococcus aureus derived peptidoglycan, in a TLR2-depen-
dent process, produced IL-13, IL-4, IL-5, IL-6, and TNF-�.
Bone marrow derived mast cells stimulated with lipopolysac-
charide derived from Escherichia coli, in a TLR4-dependent
process, produced IL-13, TNF-�, IL-1�, and IL-6, but not
IL-4 nor IL-5.91 In vitro HBE cells exposed to IL-4 and
IL-13, mount decreased cellular antimicrobial activity and
decreased mRNA levels of the antimicrobial human �-defen-
sin 2 but not �-defensin 1 or LL-37.92

IL-13 SIGNALING POLYMORPHISMS
AND ASTHMA

More than 10 papers report an association between single
nucleotide polymorphisms (SNP) in IL-13 and the effects on
asthma in adults and in children, in the context of infections,
atopy, IgE levels, or risk for asthma (Table 1).93–103 Studies
utilizing haplotype and multigene analysis have made similar
associations of IL-13 SNPs and asthma (Table 2).95,100,104

Polymorphisms in the IL-13 gene associated with
asthma are described at Arg130Gln (rs20541) (also described
as Arg164Gln, Gln110Arg, �2044 NIaIV RFLP, and
Arg144Gln based on IPI, Unit-ProtKB/Swiss-Prot, EMBL
CDS databases) in a coding region of the IL-13 gene.19,97,105
This leads to substitution of a positively charged arginine
with a neutral glutamine and is the only nonsynonymous
substitution present in all ethnic groups thus far studied (East
and West Africa, Europe, China, and South America). Studies
suggest that the Arg130Gln substitution results in decreased
affinity of IL-13 for IL-13R�2, increased expression of IL-13

and phosphorylation of STAT6.16,106 In a predominantly
White cohort of 9960 people from Washington County, MD,
the GG genotype frequency was 64%, the GA genotype
frequency was 29%, the AA genotype frequency was 4%,
with 3% samples missing. Frequency percentages were
equivalent between male and female genders.107 Furthermore,
IL-13 Arg130Gln SNP did not show variation in allele
frequency by race.108

Polymorphisms are present in IL-13 and in the cognate
receptors. A longitudinal Dutch family study population with
asthma, followed an average of 26.5 years, with polymor-
phisms in both the IL-4R� gene (S478P) and IL-13 at the
�1112 promoter region (also described as �1111, �1055)
(rs1800925) demonstrate an odds ratio 4.87 times greater for
the development of asthma versus individuals without these
associated genotypes (P � 0.0004).109 The association of the
C-1112T promoter polymorphism with asthma is reported in
diverse ethnic populations with the allergic phenotype. Func-
tional analysis of the promoter SNP identified a Yin-Yang 1
binding site activator that overlapped with a STAT motif
repressor. The Yin-Yang 1 binding site is hypothesized to
increase IL-13 transcription as opposed to STAT6 mediated
repression of IL-13 transcription in TH2 cells.110 However,
these results did not carry over to nonpolarized CD4� T cells.
The type 2 interleukin 4 receptor is dose dependent in
response patterns to IL-13 and IL-4 and transcriptional dys-
regulation at the promoter could have profound effects on
IL-13 signaling.

A single nucleotide polymorphism in the IL-13 cognate
receptor, IL4R�, based on meta-analysis, identified the
Q551R (�1652 A/G, rs1801275) IL4R variant to impart a
combined OR, 1.6; P � 0.004 for risk of atopic asthma. The

TABLE 1. IL-13 Single-Nucleotide Polymorphisms (SNP) Associated With Asthma

Gene SNP(s)/SNP ID# SNP Associated Phenotype Race Background
P Value

if Available Reference

IL13 Arg130Gln Atopy Multi-center 0.01 (93)

Total eosinophil, total serum
IgE level

Childhood asthmatics with mild
to moderate asthma

0.0442

Arg130Gln (�G4257A) Atopic dermatitis Japanese aged 11–61 0.043 (94)

Arg130Gln/IL4C-589T
Haplotype

Atopy Canadian children with family
history of asthma

0.006 (95)

Arg130Gln Atopy Iceland chart review 0.67 (96)

Arg130Gln Late wheeze age 6 Dutch children 0.007 (97)

Arg130Gln Asthma British young 0.017 B (98)

No association with IgE levels Japanese young adults 0.026 J

Arg130Gln Total serum IgE German children 0.005 (99)

�1112C/T 0.0002

�1112C/T rs1800925 Severe RSV infection asthma German children �2 hospitalized
for RSV

0.026 (100)

�1112C/T Asthma Dutch .005 asthma (101)

BHR .003 BHR

�Skin test .03 � ST

�646A/G FEV1 postbronchodilator African American 0.009 (102)

IL4R� Gln551Arg Atopic asthma Meta analysis combo adult �
children

OR 1.6; P � 0.004 (103)

BHR � Bronchial hyper-reactivity; B � British cohort; J � Japanese cohort.
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amino acid residue 55 is located in the cytoplasmic domain in
the vicinity of the STAT6 binding site and is hypothesized to
affect STAT6 signal transduction.

CLINICAL TRIALS TARGETING IL-13/IL-4
SIGNALING

Clinical trials are currently underway to investigate
blockade of IL-13/IL-13 signaling in the treatment of asthma
(Table 3). A phase IIa clinical trial of a recombinant human
IL-4 variant, pitrakinra AER 001 (AEROVANT, by
Aerovance, Berkeley, CA) that competitively binds the IL-
4R� complex and interferes with IL-4 and IL-13 actions
was published in 2007.111 The results demonstrate a re-
duction in the late phase response, after allergen challenge
in allergic asthmatics, measured as a decreased fall in
forced expiratory volume in 1 second (FEV1) and the area
under the FEV1 time curve.

Anti-IL-13 monoclonal antibody CAT-354 (NCT00873860,
by Cambridge Antibody Technology, 2006 acquired by
Astra Zeneca, 2007 merged with MedImmune, Gaithers-
burg, MD) is in phase IIa investigation to study the
efficacy and safety in adults with uncontrolled moderate-
to-severe, persistent asthma.

Anti-IL-13 monoclonal antibody QAX576 (NCT00532233,
by Novartis, Basel Switzerland) completed phase II clinical
trials recruiting patients with idiopathic pulmonary fibrosis to
treatment with single dose QAX576 to measure IL-13 pro-
duction.

A 2�O-methoxyethyl second-generation antisense drug
targeting IL4R�1 mRNA AIR645 (NCT00941577, by Altair
Therapeutics, Inc., San Diego, CA) is recruiting subjects with
mild allergic asthma and is in phase IIa investigation.

A humanized mouse monoclonal antibody against hu-
man IL-13, IMA-638 (Wyeth, 2009 acquired by Pfizer, New
York City, NY), completed 2 phase II investigations in
subjects with persistent asthma (NCT00425061) and in sub-
jects with mild atopic asthma (NCT00410280). Wyeth has
another monoclonal antibody against human IL-13, IMA-026
that is in phase II clinical trials after completion of phase I
investigation on allergen-induced late asthma responses in
subjects with mild asthma (NCT00725582).

A humanized monoclonal antibody against IL-13, Leb-
rikizumab (NCT00930163, by Genentech, 2009 acquired by
F. Hoffmann-La Roche Ltd., Basel, Switzerland), is in phase
II investigation in asthmatic adults inadequately controlled
with inhaled corticosteroids.

TABLE 2. Haplotype/Multi-Gene Analysis With Inclusion of the Arg130Gln IL-13 SNP and the Associated Haplotype Phenotype

Gene SNPs
rs

Signatures
Haplotype Associated

Phenotype
Race

Background
P Value

if Available Reference

IL13 �1512A/C
�1112C/T
Arg130Gln

rs1881457
rs1800925
rs20541

Severe RSV infection asthma German children �2 years old,
hospitalized for RSV

0.009 (FASTEHPLUS)
0.01183 (FAMHAP)

(100)

IL4 � IL13 �589C/T
�1512A/C
�1112C/T
Arg130Gln

rs2243250
rs1881457
rs1800925
rs20541

Severe RSV infection asthma German children �2 years old,
hospitalized for RSV

0.0008 (FASTEHPLUS)
0.0011 (FAMHAP)

(100)

IL4R� � IL13 Ile50Val
Arg130Gln

Asthma � IgE levels Chinese children 5 to 18
years of age

0.013 (GMDR) (104)

IL4 � IL13 �589C/T
Arg130Gln

Atopic dermatitis
Atopy (Asthma not
investigated)

Canadian children with family
history of asthma or atopy

0.006
0.009

(95)

GMDR � Generalized multifactor dimensionality reduction method.

TABLE 3. Clinical Trials Targeting IL-13/IL-4 Signaling

Agent Company Mechanism Status

CAT-354 Cambridge Antibody Technology,
Medimmune/AstraZeneca

Anti-IL-13 mAb Phase IIa

QAX576 Novartis Anti-IL-13 mAb Completed phase II

IMA-638 (Anrukinzumab) Wyeth Humanized Anti-IL-13 mAb Completed phase II

IMA-026 Wyeth Anti-IL-13 mAb Phase II

MILR1444A (Lebrikizumab) Genentech Humanized Anti-IL-13 mAb Phase II

AIR645 Altair Therapeutics Anti-sense targeting mRNA for IL4R�1 Phase IIa

AER001 (Pitrakinra) Aerovance Human IL-4 mutein inhibits IL13R�1 or IL2R�
from assembly into receptor complexes
w/IL4R�

Completed phase II

AMG317 Amgen Human Anti-IL-4R� mAb Completed phase II

mAb � monoclonal antibody.
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A human monoclonal antibody against IL4R�,
AMG317 (NCT00436670, by Amgen, Thousand Oaks, CA)
has completed phase II investigation on safety and efficacy in
subjects with moderate to severe asthma.

CAVEATS IN ANTI-IL-13 THERAPEUTICS
CD4� TH17 cells produce the cytokines IL-17A and

IL-21, which when dysregulated, are implicated in inflam-
matory and autoimmune diseases. In a mouse model, IL-13
negatively regulates IL-17A and IL-21 production by down-
regulating expression of the transcription factor retinoic acid-
related �T (ROR-�t).112 Newcomb DC et al, speculate that
blockade of IL-13 signaling could result in up-regulation of
TH17 inflammation in disease states associated with altered
TH17 signaling.112 Evidence to support this hypothesis is
demonstrated in double knock-out IL-4/IL-13 mice epicuta-
neously sensitized with OVA that resulted in increased sys-
temic TH17 responses that affected the lungs after antigen
challenge, and resulted in airway inflammation and airway
hyperresponsiveness.113

Further work is needed to define asthma phenotypes.
Woodruff PG et al, reports IL-13 blockade may benefit only
a subset of asthmatics.114 In this asthma cohort, half of the
asthmatics had IL-13 induced epithelial gene expression pro-
files in vitro and responses to inhaled corticosteroids, while
the other half did not respond despite similar clinical pheno-
types and the presence of atopy. Woodruff PG et al, speculate
that airway barrier function defects, IL-17 induced inflam-
mation, neutrophilic inflammation, and infection are impor-
tant mechanisms that warrant further investigation.

CONCLUSIONS
IL-13 is an important cytokine in airway hyperrespon-

siveness, mucus production, airway remodeling, subepithelial
airway fibrosis, infectious asthma, allergic asthma, and aspi-
rin exacerbated respiratory disease. Research studies have
implicated this cytokine in many of the pathologic events in
different asthma phenotypes. As with many biologic events,
often there are countervailing regulatory signals for activation
and inactivation. It will be important to further understand
both the mechanisms by which IL-13 is activated and inac-
tivated and how these signaling pathways play into the bigger
picture of cytokine networks, gene-gene interactions, and
ultimate pathology.

Search Strategy and Selection Criteria
This Seminar is based on PubMed, ISI Web of Knowl-

edge search for articles with “interleukin-13” in conjunction
with “asthma,” “airway hyperreactivity,” “fibrosis,” “single
nucleotide polymorphism,” “chitin,” “aspirin exacerbated re-
spiratory disease,” “aspirin,” “signaling,” “mucus,” gluco-
corticoid,” “infection” in combination with “treatment”
keywords, and other review articles and references from
those review articles deemed relevant. Clinical trials were
identified by using the keyword “interleukin-13” in
clinicaltrials.gov. We prioritized more recent publications;
however, there was no restriction on language or date of
publication.

NOTES
1. These amino acids are also enumerated as Lysine 137,

138; Arginine 141, Glutamic acids 124 and 142 in the
International Protein Index (IPI), UniProtKB/Swiss-
Prot, EMBL CDS protein sequence repositories.19
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